首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seed germination of Nicotiana tabacum L. cv. Havana 425 is determined by the balance of forces between the growth potential of the embryo and the mechanical restraint of the micropylar endosperm. In contrast to the gibberellin GA4, the brassinosteroid (BR) brassinolide (BL) did not release photodormancy of dark-imbibed photodormant seeds. Brassinolide promoted seedling elongation and germination of non-photodormant seeds, but did not appreciably affect the induction of class I beta-1,3-glucanase (betaGLU I) in the micropylar endosperm. Brassinolide, but not GA4, accelerated endosperm rupture of tobacco seeds imbibed in the light. Brassinolide and GA4 promoted endosperm rupture of dark-imbibed non-photodormant seeds, but only GA4 enhanced betaGLU I induction. Promotion of endosperm rupture by BL was dose-dependent and 0.01 microM BL was most effective. Brassinolide and GA4 promoted abscisic acid (ABA)-inhibited dark-germination of non-photodormant seeds, but only GA4 replaced light in inducing betaGLU I. These results indicate that BRs and GAs promote tobacco seed germination by distinct signal transduction pathways and distinct mechanisms. Gibberellins and light seem to act in a common pathway to release photodormancy, whereas BRs do not release photodormancy. Induction of betaGLU I in the micropylar endosperm and promotion of release of 'coat-enhanced' dormancy seem to be associated with the GA-dependent pathway, but not with BR signalling. It is proposed that BRs promote seed germination by directly enhancing the growth potential of the emerging embryo in a GA- and betaGLU I-independent manner.  相似文献   

2.
3.
Brassinosteroids and plant function: some clues, more puzzles   总被引:13,自引:0,他引:13  
The role of brassinosteroids (BRs) in plant function has been intensively studied in the last few years. Mutant analysis has demonstrated that the ability to synthesize, perceive and respond to BRs is essential to normal plant growth and development. Several key elements of BR response have been identified using both genetic and biochemical approaches, and molecular models that parallel Wingless (Wnt), transforming growth factor beta (TGF beta) and receptor tyrosine kinase (RTK) signalling in animals have been proposed. Many studies have demonstrated the role of BRs, alone and in interaction with other plant hormones, in processes such as cell elongation and seed germination. In contrast, little is known about how the sensing of BRs is connected to specific physiological responses such as stress resistance. There remain many open questions about how these connections are made.  相似文献   

4.
Sugars, signalling, and plant development   总被引:4,自引:0,他引:4  
Like all organisms, plants require energy for growth. They achieve this by absorbing light and fixing it into a usable, chemical form via photosynthesis. The resulting carbohydrate (sugar) energy is then utilized as substrates for growth, or stored as reserves. It is therefore not surprising that modulation of carbohydrate metabolism can have profound effects on plant growth, particularly cell division and expansion. However, recent studies on mutants such as stimpy or ramosa3 have also suggested that sugars can act as signalling molecules that control distinct aspects of plant development. This review will focus on these more specific roles of sugars in development, and will concentrate on two major areas: (i) cross-talk between sugar and hormonal signalling; and (ii) potential direct developmental effects of sugars. In the latter, developmental mutant phenotypes that are modulated by sugars as well as a putative role for trehalose-6-phosphate in inflorescence development are discussed. Because plant growth and development are plastic, and are greatly affected by environmental and nutritional conditions, the distinction between purely metabolic and specific developmental effects is somewhat blurred, but the focus will be on clear examples where sugar-related processes or molecules have been linked to known developmental mechanisms.  相似文献   

5.
6.
Mechanical signalling,calcium and plant form   总被引:17,自引:0,他引:17  
Calcium is a dynamic signalling molecule which acts to transduce numerous signals in plant tissues. The basis of calcium signalling is outlined and the necessity for measuring and imaging of calcium indicated. Using plants genetically transformed with a cDNA for the calcium-sensitive luminescent protein, aequorin, we have shown touch and wind signals to immediately increase cytosol calcium. Touch and wind signal plant cells mechanically, through tension and compression of appropiate cells. Many plant tissues and cells are very sensitive to mechanical stimulation and the obvious examples of climbing plants, insectivorous species as well as other less well-known examples are described. Touch sensing in these plants may be a simple evolutionary modification of sensitive mechanosensing system present in every plant. The possibility that gravitropism may be a specific adaptation of touch sensing is discussed. There is a growing appreciation that plant form may have a mechanical basis. A simple mechanical mechanism specifying spherical, cylindrical and flat-bladed structures is suggested. The limited morphological variety of plant tissues may also reflect mechanical specification. The article concludes with a discussion of the mechanisms of mechanical sensing, identifying integrin-like molecules as one important component, and considers the specific role of calcium.  相似文献   

7.
The growth factor/receptor pair HGF/c-Met exerts control on proliferation, morphogenesis and motility, and through overexpression and mutation is implicated in cancer. Here we have investigated the relationship between receptor signalling and traffic, and its control by specific PKC isotypes. It is shown that c-Met signalling to the ERK cascade occurs within endosomal compartments and that it is in this compartment that PKCepsilon specifically exerts its control on the pathway with the consequent accumulation of ERK in focal complexes. These events are clearly separated from the subsequent microtubule-dependent sorting of c-Met to its perinuclear destination, which is shown to be under the control of PKCalpha. Thus while it is shown that traffic to endosomes is essential for HGF/c-Met to trigger an ERK response, the subsequent traffic and signalling of c-Met controlled by these two PKC isotypes are unconnected events. The dynamic properties conferred by the PKCepsilon control are shown to be essential for a normal HGF-dependent migratory response. Thus PKCs are shown to control both receptor traffic and signal traffic to relay HGF/c-Met responses.  相似文献   

8.
Kim YS  Kim TW  Kim SK 《Phytochemistry》2005,66(9):1000-1006
GC-MS analysis revealed that primary roots of maize contain 6-deoxocathasterone, 6-deoxoteasterone and 6-deoxotyphasterol. These brassinosteroids, and the previously identified campesterol, campestanol, 6-deoxocastasterone and castasterone, in the roots are members of a biosynthetic pathway to castasterone, namely the late C-6 oxidation pathway, suggesting that its biosynthetic pathway is operative in the roots. To verify this, a cell-free enzyme extract was prepared from maize roots, and enzymatic conversions from campesterol to castasterone through the aforementioned sterols and brassinosteroids were examined. The presence for the biosynthetic sequences, campesterol-->24-methylcholest-4-en-3beta-ol-->24-methylcholest-4-en-3-one-->24-methylcholest-5 alpha-cholestan-3-one-->campestanol and 6-deoxoteasterone-->6-deoxo-3-dehydroteasterone-->6-deoxotyphasterol-->6-deoxocastasterone-->castasterone were demonstrated. These results indicate that maize roots contain a complete set of enzymes involved in the late C-6 oxidation pathway, thereby demonstrating that endogenous brassinosteroids are biosynthesized in the roots.  相似文献   

9.
赤霉素生物合成与信号传递对植物株高的调控   总被引:2,自引:0,他引:2  
植物株高是影响作物产量和品质的重要农艺性状。赤霉素(Gibberellins,GAs)是调控植物株高的重要激素,GA相关株高基因的克隆与分子机制研究对于合理调控作物生长发育和农业生产具有极其重要的利用价值,在水稻、小麦等粮食作物育种中得到了广泛应用。为了促进GA在果树、花卉等园艺作物育种中的有效利用,文中在分子生物学水平上介绍GA生物合成和GA信号传递途径对植物株高的调控。  相似文献   

10.
Genetic screens have been extremely useful in identifying genes involved in hormone signal transduction. However, although these screens were originally designed to identify specific components involved in early hormone signalling, mutations in these genes often confer changes in sensitivity to more than one hormone at the whole-plant level. Moreover, a variety of hormone response genes has been identified through screens that were originally designed to uncover regulators of sugar metabolism. Together, these facts indicate that the linear representation of the hormone signalling pathways controlling a specific aspect of plant growth and development is not sufficient, and that hormones interact with each other and with a variety of developmental and metabolic signals. Following the advent of arabidopsis molecular genetics we are beginning to understand some of the mechanisms by which a hormone is transduced into a cellular response. In this Botanical Briefing we review a subset of genes in arabidopsis that influence hormonal cross-talk, with emphasis on the gibberellin, abscisic acid and ethylene pathways. In some cases it appears that modulation of hormone sensitivity can cause changes in the synthesis of an unrelated hormone, while in other cases a hormone response gene defines a node of interaction between two response pathways. It also appears that a variety of hormones may converge to regulate the turnover of important regulators involved in growth and development. Examples are cited of the recent use of suppressor and enhancer analysis to identify new nodes of interaction between these pathways.  相似文献   

11.
12.
13.
The use of immunoaffinity columns containing anti-gibberellin (GA) antibodies for the selective purification of GAs in plant extracts is described. GA1, GA3, GA4, GA5, GA7, and GA9 conjugates to bovine serum albumin were synthesized and used to elicit anti-GA polyclonal antibodies (Abs) in rabbits. Protein A purified rabbit serum, containing a mixture of anti-GA Abs, was immobilized on matrices of Affi-gel 10 or Fast-Flow Sepharose 4B. Columns of these immunosorbents retained a wide range of C-19 GA methyl esters, but no C-20 GA methyl esters. Quantitative recovery of C-19 GA methyl esters was achieved from the columns, which, after reequilibration in buffer, could be reused up to 500 times. The immunosorbents were tested by examination of extracts from immature soybean and pea seeds. GAs were initially purified by passing the extracts through DEAE-cellulose and concentrating them on octadecylsilica. The extracts were methylated and further purified on the mixed anti-GA immunoaffinity columns. GAs were detected and quantified as methyl esters or methyl ester trimethylsilyl ethers by gas chromatography-mass spectrometry-selected ion monitoring. GA7 was found in soybean seeds, 17 days after anthesis, at low levels (8.8 nanograms per gram fresh weight). C-19 GAs were examined in cotyledons, embryonic axes, and testae of G2 pea seeds harvested 20 days after anthesis. High levels of GA20 and GA29 were found in cotyledons (3580 and 310 nanograms per gram fresh weight, respectively) and embryonic axes (5375 and 1430 nanograms per gram) fresh weight, respectively). Lower levels of GA9 were found in cotyledons and embryonic axes (147 and 161 nanograms per gram fresh weight, respectively). GA9 was the major GA of testae at levels of 195 nanograms per gram fresh weight. Trace quantities of GA20 and GA51 were also observed in testae.  相似文献   

14.
Angiogenesis, the formation of new blood vessels from pre-existing vessels, is critical to most physiological processes and many pathological conditions. During zebrafish development, angiogenesis expands the axial vessels into a complex vascular network that is necessary for efficient oxygen delivery. Although the dorsal aorta and the axial vein are spatially juxtaposed, the initial angiogenic sprouts from these vessels extend in opposite directions, indicating that distinct cues may regulate angiogenesis of the axial vessels. We found that angiogenic sprouts from the dorsal aorta are dependent on vascular endothelial growth factor A (Vegf-A) signalling, and do not respond to bone morphogenetic protein (Bmp) signals. In contrast, sprouts from the axial vein are regulated by Bmp signalling independently of Vegf-A signals, indicating that Bmp is a vein-specific angiogenic cue during early vascular development. Our results support a paradigm whereby different signals regulate distinct programmes of sprouting angiogenesis from the axial vein and dorsal aorta, and indicate that signalling heterogeneity contributes to the complexity of vascular networks.  相似文献   

15.
16.
Plant cells respond to different biotic and abiotic stresses by producing various uncommon phospholipids that are believed to play key roles in cell signalling. We can predict how they work because animal and yeast proteins have been shown to have specific lipid-binding domains, which act as docking sites. When such proteins are recruited to the membrane locations where these phospholipids are synthesized, the phospholipids activate them directly, by inducing a conformational change, or indirectly, by juxtaposing them with an activator protein. The same lipid-binding domains are present in Arabidopsis proteins. We believe that they represent an untapped well of information about plant lipid signalling.  相似文献   

17.
Src kinase controls cellular adhesions, including cadherin-based intercellular adhesions and integrin-mediated cell-matrix adhesions. In epithelial cells, Src activation, or increased signalling from migratory growth factor receptors via Src, induces an adhesion switch that enhances dynamic cell-matrix adhesions and migratory capacity while suppressing intercellular contact. Moreover, Src and the associated tyrosine kinase FAK are at the heart of the recently identified crosstalk between integrin- and cadherin-mediated adhesions of epithelial cells, particularly during the epithelial-to-mesenchymal transition.  相似文献   

18.
A procedure using two small preparative columns (in sequence) of C18 reverse phase Bondapak B material with methanolic extracts of plant tissue (Pisum sativum L., Malus domestica Borkh., Pimpinella anisum L.) yields two fractions: (i) gibberellin (GA) precursors, and (ii) free GA/GA methyl esters (GA-Me)/GA glucosyl conjugates. The discrete separation of (iii) free GA/GA-Me from (iv) GA glucosyl conjugates is then accomplished by a combination of differential solvent solubility and SiO2 partition chromatography. All fractions are almost pigment free, and appreciable dry weight purification was accomplished for the GA precursor and free GA/GA-Me fractions. Solvent volumes can be kept low, no buffer salts are introduced, and each fraction (i, iii, iv) can be subjected directly to preparative or analytical reverse phase C18 high performance liquid chromatography without recourse to solvent partitioning, and often without further purification.  相似文献   

19.
The distribution of endogenous gibberellin-like substances in individual organs ofZea mays L., cv. CE 250, plants was investigated during the transition from the vegetative to the generative phase of development. The gradient of the content of gibberellin-like substances and photosynthetic activity in leaf segments was followed in different parts of the Jeaves, as well as the changes in the content of gibberellin-like substances in leaf segments during an exposure in the light and in the dark. The gradient of the content of endogenous gibberellin-liko substances in the leaves, in the stem and in the spike is interpreted in terms of possible relationship of these compounds to the regulation of sink — source.  相似文献   

20.
The establishment of the apical-basal axis is a critical event in plant embryogenesis, evident from the earliest stages onwards. Polarity is evident in the embryo sac, egg cell, zygote, and embryo-suspensor complex. In the embryo-proper, two functionally distinct meristems form at each pole, through the localized expression of key genes. A number of mutants, notably of the model genetic organism Arabidopsis thaliana, have revealed new gene functions that are required for patterning of the apical-basal axis. There is now increasing evidence that two particular modes of signalling, via auxin and cell wall components, play important roles in co-ordinating the gene expression programmes that define determinative roles in the establishment of polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号