首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During murine peri-implantation development, the egg cylinder forms from a solid cell mass by the apoptotic removal of inner cells that do not contact the basement membrane (BM) and the selective survival of the epiblast epithelium, which does. The signaling pathways that mediate this fundamental biological process are largely unknown. Here we demonstrate that Rac1 ablation in embryonic stem cell-derived embryoid bodies (EBs) leads to massive apoptosis of epiblast cells in contact with the BM. Expression of wild-type Rac1 in the mutant EBs rescues the BM-contacting epiblast, while expression of a constitutively active Rac1 additionally blocks the apoptosis of inner cells and cavitation, indicating that the spatially regulated activation of Rac1 is required for epithelial cyst formation. We further show that Rac1 is activated through integrin-mediated recruitment of the Crk-DOCK180 complex and mediates BM-dependent epiblast survival through activating the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. Our results reveal a signaling cascade triggered by cell-BM interactions essential for epithelial morphogenesis.All epithelial sheets and tubes rest upon a basement membrane (BM), a thin mat of specialized extracellular matrix (ECM) consisting of laminins, type IV collagens, perlecan, and nidogens. The BM provides essential survival signals to protect epithelial cells from apoptosis, in addition to its role in cell adhesion, migration, proliferation, and polarity orientation. In the developing chick retina, removal of the retinal BM by collagenase digestion resulted in severe apoptosis of retinal neuroepithelial cells (17). In mice, targeted deletion of the genes for the BM component laminins or perlecan caused BM defects and various degrees of apoptosis of cells that attach to the BM (34, 41, 42). Also, mammary epithelial cells can survive for a long period of time when grown on a reconstituted basement membrane derived from Engelbreth-Holmof Swarm (EHS) tumor (Matrigel), but they die by apoptosis when grown on plastic, fibronectin, or type I collagen despite their firm attachment on these substrates (2, 11, 36). A similar response of keratinocytes to BM type IV collagen versus non-BM matrix proteins was observed in bioengineered human skin equivalents (40). These results suggest that the BM provides a unique microenvironment for the survival of associated epithelial cells.Embryoid body (EB) differentiation has been used to study epithelial morphogenesis and early embryogenesis. When cultured in suspension as small aggregates, mouse embryonic stem (ES) cells adhere strongly together and form spherical EBs. The outer cells of the EB differentiate to become endoderm cells, which secrete laminins, type IV collagen, perlecan, and other BM components that assemble into an underlying BM equivalent to the embryonic BM separating extraembryonic endoderm from the epiblast. Integrin α6β1 in the epiblast cells and integrin α5β1 in the endoderm cells redistribute from a pericellular location to a predominantly sub-basement membrane location (28). Following BM formation, the epiblast cells adjacent to the BM polarize to become a pseudostratified columnar epithelium (the epiblast epithelium), whereas the inner cells not in contact with the BM undergo apoptosis and are selectively removed by phagocytosis/autophagy, creating a proamniotic-like cavity. That the BM is essential for these sequential processes is evidenced by the observation that targeted deletion of the laminin γ1 gene in EBs blocks BM assembly, subsequent epiblast epithelialization, and then apoptosis-dependent cavitation (32, 42). These differentiation processes recapitulate peri-implantation development and provide a tractable in vitro model for the study of apoptosis and BM-dependent cell survival during epithelial morphogenesis.While BM-dependent cell survival is often coupled with apoptotic removal of centrally located cells not in contact with the BM during morphogenesis of epithelial cysts such as mammary glandular acini and embryonic mouse egg cylinders (7, 29), the molecular mechanisms underlying this fundamental process are poorly understood. Elegant studies on teratocarcinoma cell-derived EBs have suggested that formation of an epithelial cyst as they develop is the result of the interplay of two signals (7). One is a death signal from the endoderm that induces apoptosis of the centrally located cells to create a cavity; the other is a rescue signal mediated by contact with the BM and is required for the survival of the newly formed epiblast epithelium. Subsequent studies have revealed that bone morphogenetic protein 2 (BMP-2) is highly expressed in the endoderm and that expression of a dominant-negative (DN) BMP receptor in EBs blocked cavitation, suggesting BMP-2 to be a death factor (6). The survival signals from the interaction of the epiblast cells with the BM were studied by treating the EBs with polyclonal antiserum against membrane glycoproteins consisting of ECM adhesion receptors. The antiserum treatment induced programmed cell death in the BM-contacting epiblast layer. However, the identities of the receptors and the downstream signaling molecules involved have not been explored.In this study, we utilized EBs differentiated from genetically modified ES cells to investigate the mechanisms of BM-dependent cell survival. We show that targeted deletion of the Rac1 gene in EBs leads to massive apoptosis of epiblast cells in contact with the BM. Rac1 is activated in a BM- and integrin-dependent fashion. Stable expression of wild-type Rac1 in the mutant EBs rescues the BM-contacting epiblast, while expression of a constitutively active Rac1 also blocks the apoptosis of inner cells and cavitation. These results suggest that the spatial activation of Rac1 is essential not only for BM-dependent epiblast survival but also for apoptosis-mediated cavitation. We further show that Crk mediates Rac1 activation by recruiting the Rac1-specific activator DOCK180 to the cell-BM adhesions and that the phosphatidylinositol 3-kinase (PI3K)-Akt pathway acts downstream of Rac1 to promote BM-dependent survival. Collectively, our results have established a key role for Rac1 in embryonic epithelial morphogenesis and have uncovered a signaling pathway that mediates BM-dependent epithelial survival.  相似文献   

2.
Human embryonic stem cells (HESCs), pluripotent cells derived from the inner cell mass (ICM) of human blastocysts, represent a novel tool for the study of early human developmental events. When cultured in suspension with serum, HESCs form spherical structures resembling embryoid bodies (EBs). We show that differentiation of HESCs within EBs occurs radially, with central cells then undergoing apoptosis in association with EB cavitation. Cells within the outer layer of cavitating EBs display stage-specific immunoreactivity to pan-keratin, cytokeratin-8, GATA6, alpha-fetoprotein, and transthyretin specific antibodies, and hybridization to disabled-2, GATA4, and GATA6 specific riboprobes. Transmission electron microscopy of these cells reveals clathrin-coated micropinocytotic vesicles, microvilli, and many vacuoles, a phenotype consistent with mouse visceral endoderm (VE) rather than mouse definitive or parietal endoderm. When cultured in media supplemented with the BMP inhibitor noggin, or in the absence of serum, HESC derivatives do not develop the mouse VE-like phenotype. The addition of BMP-4 to noggin-treated HESCs cultured in serum or in serum-free conditions reconstituted development of the VE-like phenotype. These data demonstrate that human EBs undergo developmental events similar to those of mouse EBs and that in vitro BMP signalling induces derivatives of the human ICM to express a phenotype similar to mouse VE.  相似文献   

3.
4.
Embryonic stem (ES) cells, derived from the inner cell mass of blastocyst can differentiate into multiple cell lineages. In this study, we examined the possible involvement of Ras in ES cell differentiation. We found that Ras was activated upon formation of embryoid bodies (EBs), an initial step in ES cell differentiation. When expressed during EB differentiation, a dominant-negative mutant of Ras suppressed induction of marker genes for extraembryonic endoderm differentiation, including GATA-4, GATA-6, alpha-fetoprotein, and hepatocyte nuclear factor 3beta, while an activated mutant promoted their induction. Expression of a Ras mutant that selectively activates the Raf/MEK/Erk pathway also enhanced induction of extraembryonic endoderm markers, and treatment with a MEK inhibitor resulted in their decreased expression. In addition, Ras stimulated downregulation of Nanog, a suppressor of endoderm differentiation in ES cells. These data suggest that Ras activation during EB differentiation plays a crucial role in initiation of extraembryonic endoderm differentiation.  相似文献   

5.
Talin is a cytoskeletal protein that binds to integrin β cytoplasmic tails and regulates integrin activation. Talin1 ablation in mice disrupts gastrulation and causes embryonic lethality. However, the role of talin in mammalian epithelial morphogenesis is poorly understood. Here we demonstrate that embryoid bodies (EBs) differentiated from talin1-null embryonic stem cells are defective in integrin adhesion complex assembly, epiblast elongation, and lineage differentiation. These defects are accompanied by a significant reduction in integrin β1 protein levels due to accelerated degradation through an MG-132-sensitive proteasomal pathway. Overexpression of integrin β1 or MG-132 treatment in mutant EBs largely rescues the phenotype. In addition, epiblast cells isolated from talin1-null EBs exhibit impaired cell spreading and focal adhesion formation. Transfection of the mutant cells with green fluorescent protein (GFP)-tagged wild-type but not mutant talin1 that is defective in integrin binding normalizes integrin β1 protein levels and restores focal adhesion formation. Significantly, cell adhesion and spreading are also improved by overexpression of integrin β1. All together, these results suggest that talin1 binding to integrin promotes epiblast adhesion and morphogenesis in part by preventing integrin β1 degradation.  相似文献   

6.
7.
8.
9.
Hepatocyte growth factor (HGF) is released in response to myocardial infarction and may play a role in regulating cardiac remodeling. Recently, HGF was found to inhibit the apoptosis of cardiac muscle cells. Because GATA-4 can induce cell survival, the effects of HGF on GATA-4 activity were investigated. Treatment of HL-1 cells or primary adult rat cardiac myocytes with HGF, at concentrations that can be detected in the human serum after myocardial infarction, rapidly enhances GATA-4 DNA-binding activity. The enhanced DNA-binding activity is associated with the phosphorylation of GATA-4. HGF-induced phosphorylation and activation of GATA-4 is abolished by MEK inhibitors or the mutation of the ERK phosphorylation site (S105A), suggesting that HGF activates GATA-4 via MEK-ERK pathway-dependent phosphorylation. HGF enhances the expression of anti-apoptotic Bcl-x(L), and this is blocked by dominant negative mutants of MEK or GATA-4. Forced expression of wild-type GATA-4, but not the GATA-4 mutant (S105A) increases the expression of Bcl-x(L). Furthermore, expression of the GATA-4 mutant (S105A) suppresses HGF-mediated protection of cells against daunorubicin-induced apoptosis. These results demonstrate that HGF protects cardiac muscle cells against apoptosis via a signaling pathway involving MEK/ERK-dependent phosphorylation of GATA-4.  相似文献   

10.
11.
GATA-6 is expressed in presumptive cardiac mesoderm before gastrulation, but its role in heart development has been unclear. Here we show that Xenopus and zebrafish embryos, injected with antisense morpholino oligonucleotides designed specifically to knock-down translation of GATA-6 protein, are severely compromised for heart development. Injected embryos express greatly reduced levels of contractile machinery genes and, at the same stage, of regulatory genes such as bone morphogenetic protein-4 (BMP-4) and the Nkx2 family. In contrast, initial BMP and Nkx2 expression is normal, suggesting a maintenance role for GATA-6. Endoderm is critical for heart formation in several vertebrates including Xenopus, and separate perturbation of GATA-6 expression in the deep anterior endoderm and in the overlying heart mesoderm shows that GATA-6 is required in both for cardiogenesis. The GATA-6 requirement in cardiac mesoderm was confirmed in zebrafish, an organism in which endoderm is thought not to be necessary for heart formation. We therefore conclude that proper maturation of cardiac mesoderm requires GATA-6, which functions to maintain BMP-4 and Nkx2 expression.  相似文献   

12.
SMAD4 serves as a common mediator for signaling of TGF-β superfamily. Previous studies illustrated that SMAD4-null mice die at embryonic day 6.5 (E6.5) due to failure of mesoderm induction and extraembryonic defects; however, functions of SMAD4 in each germ layer remain elusive. To investigate this, we disrupted SMAD4 in the visceral endoderm and epiblast, respectively, using a Cre-loxP mediated approach. We showed that mutant embryos lack of SMAD4 in the visceral endoderm (Smad4(Co/Co);TTR-Cre) died at E7.5-E9.5 without head-fold and anterior embryonic structures. We demonstrated that TGF-β regulates expression of several genes, such as Hex1, Cer1, and Lim1, in the anterior visceral endoderm (AVE), and the failure of anterior embryonic development in Smad4(Co/Co);TTR-Cre embryos is accompanied by diminished expression of these genes. Consistent with this finding, SMAD4-deficient embryoid bodies showed impaired responsiveness to TGF-β-induced gene expression and morphological changes. On the other hand, embryos carrying Cre-loxP mediated disruption of SMAD4 in the epiblasts exhibited relatively normal mesoderm and head-fold induction although they all displayed profound patterning defects in the later stages of gastrulation. Cumulatively, our data indicate that SMAD4 signaling in the epiblasts is dispensable for mesoderm induction although it remains critical for head patterning, which is significantly different from SMAD4 signaling in the AVE, where it specifies anterior embryonic patterning and head induction.  相似文献   

13.
Investigation of the developmental fates of cells in the endodermal layer of the early bud stage mouse embryo revealed a regionalized pattern of distribution of the progenitor cells of the yolk sac endoderm and the embryonic gut. By tracing the site of origin of cells that are allocated to specific regions of the embryonic gut, it was found that by late gastrulation, the respective endodermal progenitors are already spatially organized in anticipation of the prospective mediolateral and anterior-posterior destinations. The fate-mapping data further showed that the endoderm in the embryonic compartment of the early bud stage gastrula still contains cells that will colonize the anterior and lateral parts of the extraembryonic yolk sac. In the Lhx1(Lim1)-null mutant embryo, the progenitors of the embryonic gut are confined to the posterior part of the endoderm. In particular, the prospective anterior endoderm was sequestered to a much smaller distal domain, suggesting that there may be fewer progenitor cells for the anterior gut that is poorly formed in the mutant embryo. The deficiency of gut endoderm is not caused by any restriction in endodermal potency of the mutant epiblast cells but more likely the inadequate allocation of the definitive endoderm. The inefficient movement of the anterior endoderm, and the abnormal differentiation highlighted by the lack of Sox17 and Foxa2 expression, may underpin the malformation of the head of Lhx1 mutant embryos.  相似文献   

14.
15.
This study investigates the establishment of alternative cell fates during embryoid body differentiation when ES cells diverge into two epithelia simulating the pre-gastrulation endoderm and ectoderm. We report that endoderm differentiation and endoderm-specific gene expression, such as expression of laminin 1 subunits, is controlled by GATA6 induced by FGF. Subsequently, differentiation of the non-polar primitive ectoderm into columnar epithelium of the epiblast is induced by laminin 1. Using GATA6 transformed Lamc1-null endoderm-like cells, we demonstrate that laminin 1 exhibited by the basement membrane induces epiblast differentiation and cavitation by cell-to-matrix/matrix-to-cell interactions that are similar to the in vivo crosstalk in the early embryo. Pharmacological and dominant-negative inhibitors reveal that the cell shape change of epiblast differentiation requires ROCK, the Rho kinase. We also show that pluripotent ES cells display laminin receptors; hence, these stem cells may serve as target for columnar ectoderm differentiation. Laminin is not bound by endoderm derivatives; therefore, the sub-endodermal basement membrane is anchored selectively to the ectoderm, conveying polarity to its assembly and to the differentiation induced by it. Unique to these interactions is their flow through two cell layers connected by laminin 1 and their involvement in the differentiation of two epithelia from the same stem cell pool: one into endoderm controlled by FGF and GATA6; and the other into epiblast regulated by laminin 1 and Rho kinase.  相似文献   

16.
17.
BMPRIA is a receptor for bone morphogenetic proteins with high affinity for BMP2 and BMP4. Mouse embryos lacking Bmpr1a fail to gastrulate, complicating studies on the requirements for BMP signaling in germ layer development. Recent work shows that BMP4 produced in extraembryonic tissues initiates gastrulation. Here we use a conditional allele of Bmpr1a to remove BMPRIA only in the epiblast, which gives rise to all embryonic tissues. Resulting embryos are mosaics composed primarily of cells homozygous null for Bmpr1a, interspersed with heterozygous cells. Although mesoderm and endoderm do not form in Bmpr1a null embryos, these tissues are present in the mosaics and are populated with mutant cells. Thus, BMPRIA signaling in the epiblast does not restrict cells to or from any of the germ layers. Cells lacking Bmpr1a also contribute to surface ectoderm; however, from the hindbrain forward, little surface ectoderm forms and the forebrain is enlarged and convoluted. Prechordal plate, early definitive endoderm, and anterior visceral endoderm appear to be expanded, likely due to defective morphogenesis. These data suggest that the enlarged forebrain is caused in part by increased exposure of the ectoderm to signaling sources that promote anterior neural fate. Our results reveal critical roles for BMP signaling in endodermal morphogenesis and ectodermal patterning.  相似文献   

18.
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta superfamily, play a variety of roles during mouse development. BMP type II receptor (BMPR-II) is a type II serine/threonine kinase receptor, which transduces signals for BMPs through heteromeric complexes with type I receptors, including activin receptor-like kinase 2 (ALK2), ALK3/BMPR-IA, and ALK6/BMPR-IB. To elucidate the function of BMPR-II in mammalian development, we generated BMPR-II mutant mice by gene targeting. Homozygous mutant embryos were arrested at the egg cylinder stage and could not be recovered at 9.5 days postcoitum. Histological analysis revealed that homozygous mutant embryos failed to form organized structure and lacked mesoderm. The BMPR-II mutant embryos are morphologically very similar to the ALK3/BMPR-IA mutant embryos, suggesting that BMPR-II is important for transducing BMP signals during early mouse development. Moreover, the epiblast of the BMPR-II mutant embryo exhibited an undifferentiated character, although the expression of tissue-specific genes for the visceral endoderm was essentially normal. Our results suggest that the function of BMPR-II is essential for epiblast differentiation and mesoderm induction during early mouse development.  相似文献   

19.
Stress-induced activation of GATA-4 in cardiac muscle cells   总被引:1,自引:0,他引:1  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号