首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two amber mutations in gene 67 of bacteriophage T4 were constructed by oligonucleotide-directed mutagenesis and the resulting mutated genes were recombined back into the phage genome and their phenotype was studied. The 67amK1 mutation is close to the amino terminus of the gene, and phage carrying this mutation are unable to form plaques on suppressor-negative hosts. A second mutation, 67amK2, which lies in the middle of the gene, three codons N-terminal to a proteolytic cleavage site, produces a small number of viable phage particles. In suppressor-negative hosts, both mutants produce polyheads and proheads. 67amK1 assembles only few proheads that have a disorganized core structure, as judged from thin sections of infected cells. The proheads and the mature phages of both mutants are mainly isometric rather than having the usual prolate shape. Depending on the 67 mutant and the host, between 20% and 73% of the particles that are produced are isometric, and 1 to 10% are two-tailed biprolate particles. 67amK2 phages grown on a supD suppressor strain that inserts serine in place of the wild-type leucine do not contain gp67* derived from gene product 67 (gp67) by proteolytic cleavage. This demonstrates the importance of the correct amino acid at this position in the protein. Other abnormalities in these 67amK2 phages are the presence of uncleaved scaffolding core proteins (IPIII and gp68), indicating a structural alteration in the prohead scaffold, resulting in only partial cleavage. In wild-type phages these proteins are found in the head only in the cleaved form. With double-mutants of 67 with mutations in the major shell protein gp23 no naked scaffolding cores were found, confirming the necessity of gp67 for the assembly or persistence of a "normal" core.  相似文献   

2.
Formation of the prohead core of bacteriophage T4 in vivo.   总被引:6,自引:4,他引:2       下载免费PDF全文
Formation of the prohead core of bacteriophage T4 was not dependent on shell assembly. In mutant infections, where the production or assembly of active shell protein was not possible, naked core structures were formed. The particles were generally attached to the bacterial inner membrane and possessed defined prolate dimensions. The intracellular yield varied between 15 and 71% of a corresponding prohead yield and was dependent on the temperature of incubation. The products of genes 21 and 22 were found to be essential for in vivo core formation, whereas those of genes 20, 23, 24, 31, and 40, as well as the internal proteins I to III, were dispensable.  相似文献   

3.
Structure and assembly of the capsid of bacteriophage P22.   总被引:2,自引:0,他引:2  
Identification of the genes and proteins involved in phage P22 formation has permitted a detailed analysis of particle assembly, revealing some unexpected aspects. The polymerization of the major coat protein (gene 5 product) into an organized capsid is directed by a scaffolding protein (gene 8 product) which is absent from mature phage. The resulting capsid structure (prohead) is the precursor for DNA encapsidation. All of the scaffolding protein exits from the prohead in association with DNA packaging. These molecules then recycle, directing further rounds of prohead assembly. The structure of the prohead has been studied by electron microscopy of thin sections of phage infected cells, and by low angle X-ray scattering of concentrated particles. The results show that the prohead is a double shell structure, or a ball within a shell. The inner ball or shell is composed of the scaffolding protein while the outer shell is composed of coat protein. The conversion from prohead to mature capsid is associated with an expansion of the coat protein shell. It is possible that the scaffolding protein molecules exit through the capsid lattice. When DNA encapsidation within infected cells is blocked by mutation, scaffolding protein is trapped in proheads and cannot recycle. Under these conditions, the rate of synthesis of gp8 increases, so that normal proheads continue to form. These results suggest that free scaffolding protein negatively regulates its own further synthesis, providing a coupling between protein synthesis and protein assembly.  相似文献   

4.
A Kuhn  B Keller  M Maeder    F Traub 《Journal of virology》1987,61(1):113-118
Bacteriophage T4 assembly was impaired in Escherichia coli hdB3-1 at an incubation temperature below 30 degrees C. Naked prohead cores (head scaffold) bound to the inner surface of the plasma membrane accumulated, and the major shell protein (gp23) precipitated into visible intracellular aggregates in the cytoplasm. Shifting the temperature to 42 degrees C allowed newly synthesized gp23 to assemble around the accumulated cores. We conclude that synchronous assembly of the scaffold and shell is not obligatory and that naked cores can serve as intermediates in the T4 assembly pathway.  相似文献   

5.
Architecturally conserved viral portal dodecamers are central to capsid assembly and DNA packaging. To examine bacteriophage T4 portal functions, we constructed, expressed and assembled portal gene 20 fusion proteins. C-terminally fused (gp20-GFP, gp20-HOC) and N-terminally fused (GFP-gp20 and HOC-gp20) portal fusion proteins assembled in vivo into active phage. Phage assembled C-terminal fusion proteins were inaccessible to trypsin whereas assembled N-terminal fusions were accessible to trypsin, consistent with locations inside and outside the capsid respectively. Both N- and C-terminal fusions required coassembly into portals with approximately 50% wild-type (WT) or near WT-sized 20am truncated portal proteins to yield active phage. Trypsin digestion of HOC-gp20 portal fusion phage showed comparable protection of the HOC and gp20 portions of the proteolysed HOC-gp20 fusion, suggesting both proteins occupy protected capsid positions, at both the portal and the proximal HOC capsid-binding sites. The external portal location of the HOC portion of the HOC-gp20 fusion phage was confirmed by anti-HOC immuno-gold labelling studies that showed a gold 'necklace' around the phage capsid portal. Analysis of HOC-gp20-containing proheads showed increased HOC protein protection from trypsin degradation only after prohead expansion, indicating incorporation of HOC-gp20 portal fusion protein to protective proximal HOC-binding sites following this maturation. These proheads also showed no DNA packaging defect in vitro as compared with WT. Retention of function of phage and prohead portals with bulky internal (C-terminal) and external (N-terminal) fusion protein extensions, particularly of apparently capsid tethered portals, challenges the portal rotation requirement of some hypothetical DNA packaging mechanisms.  相似文献   

6.
Missense mutants of bacteriophage lambda that produce small proheads were found among prophage mutants defective in the major head protein gpE. Measurements of the sedimentation coefficient and molecular weight of the small proheads showed that they have the T = 4 structure composed of 240 molecules of gpE instead of the wild-type T = 7 structure composed of 420 molecules of gpE. When the phage mutants were grown in groE mutants of Escherichia coli, they produced small unprocessed proheads, which contained a smaller number (about 60) of the core protein (gpNu3) molecules than normal unprocessed proheads, which contain about 180 molecules of gpNu3. This shows that the major head protein determines the size of not only the shell but also the core of unprocessed proheads. These mutants by themselves produce very few mature small-headed phage particles, partly because the lambda DNA molecule, whose cos sites are separated at a distance of 48,500 bases, is too long to be packaged into the small proheads. However, the small proheads can package shorter DNA in vivo and in vitro at somewhat reduced efficiency, if the length or a multiple of the length between the cos sites of the DNA is 13,000 to 19,000 bases.  相似文献   

7.
We have examined a series of lambda proheads and mature structures by small angle X-ray diffraction. This technique yields spherically averaged density distributions and some information about surface organization of particles in solution.We find that gpE 2 of proheads and heads forms shells with one of two radii; A?, B?, groE?, and Nu3? proheads have shells of radius 246 Å, while mature heads, urea-treated A? proheads and C? proheads have a radius of 300 Å. The expansion of proheads to mature heads is accompanied by a corresponding decrease in the thickness of the shell. groE? proheads contain a core. This core is lost spontaneously from the structure and is only observed if the structures are fixed with glutaraldehyde prior to examination by X-ray diffraction or electron microscopy.C? proheads expand to mature head size spontaneously. A preparation of C? proheads which was fixed with glutaraldehyde at an early stage of the purification had the smaller, prohead radius. Unfixed particles from this preparation expanded to the mature head size after further purification and standing in the cold for several days. This result suggests that gpC may be involved in regulating head expansion.The radii of the protein shells of mature heads are identical for a series of phages that contain between 78% and 105% of the wild-type complement of DNA, and this radius is the same as that of proheads expanded in the absence of DNA. These results with phage lambda indicate that assembly of a double shell structure composed of coat and scaffolding protein, followed by expansion to a larger shell containing only coat protein is a general feature of the morphogenesis of dsDNA phages.  相似文献   

8.
The DNA entrance vertex of the phage head is critical for prohead assembly and DNA packaging. A single structural protein comprises this dodecameric ring substructure of the prohead. Assembly of the phage T4 prohead occurs on the cytoplasmic membrane through a specific attachment at or near the gp20 DNA entrance vertex. An auxiliary head assembly gene product, gp40, was hypothesized to be involved in assembling the gp20 substructure. T4 genes 20, 40 and 20 + 40 were cloned into expression vectors under lambda pL promoter control. The corresponding T4 gene products were synthesized in high yield and were active as judged by their ability to complement the corresponding infecting T4 mutants in vivo. The cloned T4 gene 20 and gene 40 products were inserted into the cytoplasmic membrane as integral membrane proteins; however, gp20 was inserted into the membrane only when gp40 was also synthesized, whereas gp40 was inserted in the presence or absence of gp20. The gp20 insertion required a membrane potential, was not dependent upon the Escherichia coli groE gene, and assumed a defined membrane-spanning conformation, as judged by specific protease fragments protected by the membrane. The inserted gp20 structure could be probed by antibody binding and protein A-gold immunoelectron microscopy. The data suggest that a specific gp20-gp40-membrane insertion structure constitutes the T4 prohead assembly initiation complex.  相似文献   

9.
The product of gene 31 is normally required for assembly of the T4 capsid. Two mutations that each bypass that requirement are shown to be located at separate sites in gene 23, which encodes the major structural protein of the capsid. A second phenotypic effect that characterizes both bypass31 mutant strains is the ability to multiply in host-defective strains, such as hdB3-1 and groEL mutants, on which wild-type T4 is unable to assemble capsids. The genetic data indicate that both phenotypic effects are due to the bypass31 mutation. Elimination of the requirement for both the phage protein, gp31, and the host protein, GroEL, by either of two single mutations in gene 23 indicates that GroEL and gp31 are normally needed to interact with gp23 in capsid assembly of wild-type T4.  相似文献   

10.
V B Rao  L W Black 《Cell》1985,42(3):967-977
A phage T4 DNA packaging enzyme appears to arise as a processed form of the major T4 capsid structural protein gp23. The enzyme activity and antigen are missing from all head gene mutants that block the morphogenetic proteolytic processing reactions of the head proteins in vivo. The enzyme antigen can be formed in vitro by T4 (gp21) specific processing of gp23 containing extracts. Enzyme antigen is found in active processed proheads but not in full heads. The enzyme and the major capsid protein show immunological cross-reactivity, produce common peptides upon proteolysis, and share an assembly-conformation-dependent ATP binding site. The packaging enzyme and the mature capsid protein (gp23*) both appear to arise from processing of gp23, the former as a minor product of a specific gp23 structure in the prohead, acting in DNA packaging as a DNA-dependent ATPase, and a headful-dependent terminase.  相似文献   

11.
Previous studies have shown that the assembly of the precursor shell (prohead) of bacteriophage P22 requires the copolymerization of the gene 5 coat protein with the gene 8 scaffolding protein. Removal of the scaffolding protein by mutation prevents efficient coat protein assembly, but some aberrant particles do form. We have now isolated these structures and characterized them with respect to morphology, protein composition, and small-angle X-ray scattering properties.The aberrant particles fall into three morphological classes, i.e. complex spirals and closed shells of two sizes. Small-angle X-ray scattering studies confirm that the larger particles are hollow shells with the radius of proheads (r = 260 A?), and not of the mature virus (r = 285 A?). These structures lack the inner shell of scaffolding protein found in proheads. The small particles have a radius of 195 Å, smaller than proheads, and appear to contain material, not scaffolding protein, within the outer shell.The aberrant particles contain two minor protein species, the gene 9 tail-spike protein, and an unidentified 67,000 molecular weight polypeptide, probably from the host. Neither is found in normal proheads. Removal of gene.9 product by mutation did not affect the formation of the aggregates. Fractionation of the morphological classes of particles revealed that the 67,000 molecular weight band was associated with the closed shells. It may be serving as a pseudo-initiator.Earlier studies had shown that treatment of proheads with sodium dodecyl sulfate in vitro resulted in loss of the scaffolding protein, and expansion of the shell to the mature radius of 285 Å. When the 8? prohead-sized shells were treated similarly, they also expanded to the mature-sized shell. These results support the idea that there are at least two stable states of the coat protein, one of which, the prohead form, is an obligatory precursor of the mature form.  相似文献   

12.
Isolation and reassembly of bacteriophage T4 core proteins   总被引:1,自引:0,他引:1  
The products of genes 22, 67 and 68, and the internal proteins IPI, IPII and IPIII, as components of the scaffolding core of the bacteriophage T4 prohead, have been isolated and purified by hydroxylapatite column chromatography. Under conditions promoting reassembly in vitro, the proteins associated into elongated particles of practically constant width but variable length that we have called polycores. Preliminary optical diffraction experiments indicate that polycores may have an ordered structure, possibly helical, as has been suggested for the polyhead core. The coassembly of core proteins and the purified shell protein gp23 results in the formation of core-containing polyheads. Occasionally, prolate core-like particles have been observed but their reproducible formation has not been attained. Attempts to investigate the role of the minor prohead component gp20 in core assembly have been made through the cloning of the corresponding gene in an expression vector and subsequent purification of the protein.  相似文献   

13.
In double-stranded DNA bacteriophages the viral DNA is translocated into an empty prohead shell by a powerful ATP-driven motor assembled at the unique portal vertex. Terminases consisting of two to three packaging-related ATPase sites are central to the packaging mechanism. But the nature of the key translocating ATPase, stoichiometry of packaging motor, and basic mechanism of DNA encapsidation are poorly understood. A defined phage T4 packaging system consisting of only two components, proheads and large terminase protein (gp17; 70 kDa), is constructed. Using the large expanded prohead, this system packages any linear double-stranded DNA, including the 171 kb T4 DNA. The small terminase protein, gp16 (18 kDa), is not only not required but also strongly inhibitory. An ATPase activity is stimulated when proheads, gp17, and DNA are actively engaged in the DNA packaging mode. No packaging ATPase was stimulated by the N-terminal gp17-ATPase mutants, K166G (Walker A), D255E (Walker B), E256Q (catalytic carboxylate), D255E-E256D and D255E-E256Q (Walker B and catalytic carboxylate), nor could these sponsor DNA encapsidation. Experiments with the two gp17 domains, N-terminal ATPase domain and C-terminal nuclease domain, suggest that terminase association with the prohead portal and communication between the domains are essential for ATPase stimulation. These data for the first time established an energetic linkage between packaging stimulation of N-terminal ATPase and DNA translocation. A core pathway for the assembly of functional DNA translocating motor is proposed. Since the catalytic motifs of the N-terminal ATPase are highly conserved among >200 large terminase sequences analyzed, these may represent common themes in phage and herpes viral DNA translocation.  相似文献   

14.
The assembly of the product of bacteriophage T4 gene 23 (gp23), the uncleaved form of the main shell protein, has been studied. Assembly and disassembly follow the predictions for entropy-driven processes; assembly is strongly favored by conditions of high salt concentrations and high temperatures, whereas low salt and low temperatures promote disassembly. In the absence of the scaffolding core proteins in vitro, only polyheads, the tubular variant of the prohead, are produced. Kinetic studies show that the rate of polyhead dissociation depends on the concentration of associated protein, not on the number and length of the particles. Comparable to crystal formation, assembly of gp23 occurs above a critical concentration, which is dependent on salt concentration, pH and temperature. These characteristics are common to most self-assembling systems. The oligomeric states of gp23 have been investigated by analytical ultracentrifugation, which indicated the existence, at very low salt concentration and low temperature, of an equilibrium between monomers and higher oligomers, culminating in the hexamer. At pH 9.0 polyheads are completely dissociated into their monomeric gp23 subunits. Our data suggest that the hexamer is a true intermediate of polyhead assembly.  相似文献   

15.
The study of bacteriophage T4 assembly has revealed regulatory mechanisms pertinent not only to viruses but also to macromolecular complexes. The capsid of bacteriophage T4 is composed of the major capsid protein gp23, and a minor capsid protein gp24, which is arranged as pentamers at the vertices of the capsid. In this study the T4 capsid protein gp24 and its mutant forms were overexpressed and purified to homogeneity. The overexpression from plasmid vectors of all the constructs in Escherichia coli yields biologically active protein in vivo as determined by assembly of active virus following infection with inactivated gene 24 mutant viruses. The gp24 mutant was subjected to surface entropy reduction by mutagenesis and reductive alkylation in order to improve its crystallization properties and diffraction quality. To determine if surface mutagenesis targeting would result in diffractable crystals, two glutamate to alanine mutations (E89A,E90A) were introduced. We report here the biochemical observations and consequent mutagenesis experiment that resulted in improvements in the stability, crystallizability and crystal quality of gp24 without affecting the overall folding. Rational modification of the protein surface to achieve crystallization appears promising for improving crystallization behavior and crystal diffracting qualities. The crystal of gp24(E89A,E90A) diffracted to 2.6A resolution compared to wild-type gp24 at 3.80A resolution under the same experimental conditions. Surface mutation proved to be a better method than reductive methylation for improving diffraction quality of the gp24 crystals.  相似文献   

16.
We have used electron microscopy and small-angle X-ray diffraction to study the three principal structures found in the head assembly pathway of Salmonella phage P22. These structures are, in order of their appearance in the pathway: proheads, unstable filled heads (which lose their DNA and become empty heads upon isolation), and phage. In addition, we can convert proheads to an empty head-like form (the empty prohead) in vitro by treating them with 0.8% sodium dodecyl sulfate at room temperature.We have shown that proheads are composed of a shell of coat protein with a radius of 256 Å, containing within it a thick shell or a solid ball (outer radius 215 Å) of a second protein, the scaffolding protein, which does not appear in phage. The three other structures studied are all about 10% larger than proheads, having outer shells with radii of about 285 Å. Empty heads and empty proheads appear identical by small-angle X-ray diffraction to a resolution of 25 Å, both being shells about 40 Å thick. Phage appear to be made up of a protein shell identical to that in empty heads and empty proheads, within which is packed the DNA.Some details of the DNA packing are also revealed by the diffraction pattern of phage. The inter-helix distance is about 28 Å, and the hydration is about 1.5 g of water per g of DNA. Certain aspects of the pattern suggest that the DNA interacts in a specific mariner with the coat protein subunits on the inside edge of the protein shell.Thus, the prohead-to-head transformation involves, in addition to the loss of an internal scaffold and its replacement by DNA, a structural transition in the outer shell. Diffraction from features of the surface organization in these structures indicates that the clustering of the coat protein does not change radically during the expansion. The fact that the expansion occurs in vitro during the formation of empty proheads shows that it is due to the bonding properties of the coat protein alone, although it could be triggered in vivo by DNA -protein interactions. The significance of the structural transition is discussed in terms of its possible role in the control of head assembly and DNA packaging.  相似文献   

17.
A protein mixture which is derived from bacteriophage T4 preheads formed in vivo contains all the important prehead proteins: i.e. protein P23, which forms the icosahedral prehead shell; the core proteins P22 and internal protein III; and two quantitatively minor proteins, P24 and P20. Conditions are described under which these proteins assemble in vitro into structures that (1) resemble preheads when visualized by electron microscopy, (2) contain all prehead proteins, and (3) have a similar length and diameter as preheads formed in vivo. It is concluded that prehead-like structures can be assembled in vitro, and that the mechanism that determines the length and diameter of the T4 prehead is active in our in vitro system. Evidence is presented that the core proteins play an important role in specifying the prehead diameter. The result of assembly experiments after partial fractionation of the protein mixture by gel filtration suggests that P20 plays a key role in the assembly of prehead-like structures in vitro, whereas P24 is not required. A possible mechanism by which P20 governs tha assembly of P23 and the core proteins is discussed.  相似文献   

18.
Isolation and characterization of bacteriophage T4 mutant preheads.   总被引:12,自引:8,他引:4       下载免费PDF全文
To determine the function of individual gene products in the assembly and maturation of the T4 prehead, we have isolated and characterized aberrant preheads produced by mutations in three of the T4 head genes. Mutants in gene 21, which codes for the T4 maturation proteases, produce rather stable preheads whose morphology and protein composition are consistent with a wild-type prehead blocked in the maturation cleavages. Mutants in gene 24 produce similar structures which are unstable because they have gaps at all of their icosahedral vertices except the membrane attachment site. In addition, greatly elongated "giant preheads" are produced, suggesting that in the absence of P24 at the vertices, the distal cap of the prehead is unstable, allowing abnormal elongation of broth the prehead core and its shell. Vertex completion by P24 is required to allow the maturation cleavages to occur, and 24- preheads can be matured to capsids in vitro by the addition of P24. Preheads produced by a temperature-sensitive mutant in gene 23 are deficient in core proteins. We show that the shell of these preheads has the expanded lattice characteristic of the mature capsid as well as the binding sites for the proteins hoc and soc, even though none of the maturation cleavage takes place. We also show that 21- preheads composed of wild-type P23 can be expanded in vitro without cleavage.  相似文献   

19.
Many large viral capsids require special pentameric proteins at their fivefold vertices. Nevertheless, deletion of the special vertex protein gene product 24 (gp24) in bacteriophage T4 can be compensated by mutations in the homologous major capsid protein gp23. The structure of such a mutant virus, determined by cryo-electron microscopy to 26 angstroms, shows that the gp24 pentamers are replaced by mutant major capsid protein (gp23) pentamers at the vertices, thus re-creating a viral capsid prior to the evolution of specialized major capsid proteins and vertex proteins. The mutant gp23* pentamer is structurally similar to the wild-type gp24* pentamer but the insertion domain is slightly more distant from the gp23* pentamer center. There are additional SOC molecules around the gp23* pentamers in the mutant virus that were not present around the gp24* pentamers in the wild-type virus.  相似文献   

20.
The HK97 bacteriophage capsid is a unique example of macromolecular catenanes: interlocked rings of covalently attached protein subunits. The chain mail organization of the subunits stabilizes a particle in which the maximum thickness of the protein shell is 18A and the maximum diameter is 550A. The electron density has the appearance of a balloon illustrating the extraordinary strength conferred by the unique subunit organization. The refined structure shows novel qualities of the HK97 shell protein, gp5 that, together with the protease gp4, guides the assembly and maturation of the virion. Although gp5 forms hexamers and pentamers and the subunits exist in different structural environments, the tertiary structures of the seven protein molecules in the viral asymmetric unit are closely similar. The interactions of the subunits in the shell are exceptionally complex with each subunit interacting with nine other subunits. The interactions of the N-terminus released after gp5 cleavage appear important for organization of the loops that become crosslinked to the core of a neighboring subunit at the maturation. A comparison with a model of the Prohead II structure revealed that the surfaces of non-covalent contact between the monomers that build up hexamers/pentamers are completely redefined during maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号