首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The continent of Africa is thought to be the site of origin of all modern humans and is the more recent origin of millions of African Americans. Although Africa has the highest levels of human genetic diversity both within and between populations, it is under-represented in studies of human genetics. Recent advances have been made in understanding the origins of modern humans within Africa, the rate of adaptations due to positive selection, the routes taken in the first migrations of modern humans out of Africa, and the degree of admixture with archaic populations. Africa is also in dire need of effective medical interventions, and studies of genetic variation in Africans will shed light on the genetic basis of diseases and resistance to infectious diseases. Thus, we have tremendous potential to learn about human variation and evolutionary history and to positively impact human health care from studies of genetic diversity in Africa.  相似文献   

2.
Single-nucleotide polymorphism (SNP) arrays have become a popular technology for disease-association studies, but they also have potential for studying the genetic differentiation of human populations. Application of the Affymetrix GeneChip Human Mapping 500K Array Set to a population of 102 individuals representing the major ethnic groups in the United States (African, Asian, European, and Hispanic) revealed patterns of gene diversity and genetic distance that reflected population history. We analyzed allelic frequencies at 388,654 autosomal SNP sites that showed some variation in our study population and 10% or fewer missing values. Despite the small size (23-31 individuals) of each subpopulation, there were no fixed differences at any site between any two subpopulations. As expected from the African origin of modern humans, greater gene diversity was seen in Africans than in either Asians or Europeans, and the genetic distance between the Asian and the European populations was significantly lower than that between either of these two populations and Africans. Principal components analysis applied to a correlation matrix among individuals was able to separate completely the major continental groups of humans (Africans, Asians, and Europeans), while Hispanics overlapped all three of these groups. Genes containing two or more markers with extraordinarily high genetic distance between subpopulations were identified as candidate genes for health differences between subpopulations. The results show that, even with modest sample sizes, genome-wide SNP genotyping technologies have great promise for capturing signatures of gene frequency difference between human subpopulations, with applications in areas as diverse as forensics and the study of ethnic health disparities.  相似文献   

3.
Human genetic variation particularly in Africa is still poorly understood. This is despite a consensus on the large African effective population size compared to populations from other continents. Based on sequencing of the mitochondrial Cytochrome C Oxidase subunit II (MT-CO2), and genome wide microsatellite data we observe evidence suggesting the effective size (Ne) of humans to be larger than the current estimates, with a foci of increased genetic diversity in east Africa, and a population size of east Africans being at least 2-6 fold larger than other populations. Both phylogenetic and network analysis indicate that east Africans possess more ancestral lineages in comparison to various continental populations placing them at the root of the human evolutionary tree. Our results also affirm east Africa as the likely spot from which migration towards Asia has taken place. The study reflects the spectacular level of sequence variation within east Africans in comparison to the global sample, and appeals for further studies that may contribute towards filling the existing gaps in the database. The implication of these data to current genomic research, as well as the need to carry out defined studies of human genetic variation that includes more African populations; particularly east Africans is paramount.  相似文献   

4.
The Cape buffalo (Syncerus caffer caffer) is one of the dominant and most widespread herbivores in sub‐Saharan Africa. High levels of genetic diversity and exceptionally low levels of population differentiation have been found in the Cape buffalo compared to other African savannah ungulates. Patterns of genetic variation reveal large effective population sizes and indicate that Cape buffalos have historically been interbreeding across considerable distances. Throughout much of its range, the Cape buffalo is now largely confined to protected areas due to habitat fragmentation and increasing human population densities, possibly resulting in genetic erosion. Ten buffalo populations in Kenya and Uganda were examined using seventeen microsatellite markers to assess the regional genetic structure and the effect of protected area size on measures of genetic diversity. Two nested levels of genetic structure were identified: a higher level partitioning populations into two clusters separated by the Victoria Nile and a lower level distinguishing seven genetic clusters, each defined by one or two study populations. Although relatively small geographic distances separate most of the study populations, the level of genetic differentiation found here is comparable to that among pan‐African populations. Overall, correlations between conservancy area and indices of genetic diversity suggest buffalo populations inhabiting small parks are showing signs of genetic erosion, stressing the need for more active management of such populations. Our findings raise concerns about the future of other African savannah ungulates with lower population sizes and inferior dispersal capabilities compared with the buffalo.  相似文献   

5.
Africa is the ultimate source of modern humans and as such harbors more genetic variation than any other continent. For this reason, studies of the patterns of genetic variation in African populations are crucial to understanding how genes affect phenotypic variation, including disease predisposition. In addition, the patterns of extant genetic variation in Africa are important for understanding how genetic variation affects infectious diseases that are a major problem in Africa, such as malaria, tuberculosis, schistosomiasis, and HIV/AIDS. Therefore, elucidating the role that genetic susceptibility to infectious diseases plays is critical to improving the health of people in Africa. It is also of note that recent and ongoing social and cultural changes in sub-Saharan Africa have increased the prevalence of non-communicable diseases that will also require genetic analyses to improve disease prevention and treatment. In this review we give special attention to many of the past and ongoing studies, emphasizing those in Sub-Saharan Africans that address the role of genetic variation in human disease. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

6.
Human genome diversity studies analyse genetic variation among individuals and between populations in order to understand the origins and evolution of anatomically modern humans (Homo sapiens sapiens). The availability of thousands of DNA polymorphisms (genetic markers) brings analytic power to these studies. Human genome diversity studies have clearly shown that the large part of genetic variability is due to differences among individuals within populations rather than to differences between populations, effectively discrediting a genetic basis of the concept of ‘race’. Evidence from paleontology, archaeology and genetic diversity studies is quite consistent with an African origin of modern humans more than 100 000 years ago. The evidence favors migrations out of African as the source of the original peopling of Asia, Australia, Europe and Oceania. An international program for the scientific analysis of human genome diversity and of human evolution has been developed. The Human Genome Diversity Project (HGDP) aims to collect and preserve biologic samples from hundreds of populations throughout the world, make DNA from these samples available to scientists and distribute to the scientific community the results of DNA typing with hundreds of genetic markers.  相似文献   

7.
We report a comparison of worldwide genetic variation among 255 individuals by using autosomal, mitochondrial, and Y-chromosome polymorphisms. Variation is assessed by use of 30 autosomal restriction-site polymorphisms (RSPs), 60 autosomal short-tandem-repeat polymorphisms (STRPs), 13 Alu-insertion polymorphisms and one LINE-1 element, 611 bp of mitochondrial control-region sequence, and 10 Y-chromosome polymorphisms. Analysis of these data reveals substantial congruity among this diverse array of genetic systems. With the exception of the autosomal RSPs, in which an ascertainment bias exists, all systems show greater gene diversity in Africans than in either Europeans or Asians. Africans also have the largest total number of alleles, as well as the largest number of unique alleles, for most systems. GST values are 11%-18% for the autosomal systems and are two to three times higher for the mtDNA sequence and Y-chromosome RSPs. This difference is expected because of the lower effective population size of mtDNA and Y chromosomes. A lower value is seen for Y-chromosome STRs, reflecting a relative lack of continental population structure, as a result of rapid mutation and genetic drift. Africa has higher GST values than does either Europe or Asia for all systems except the Y-chromosome STRs and Alus. All systems except the Y-chromosome STRs show less variation between populations within continents than between continents. These results are reassuring in their consistency and offer broad support for an African origin of modern human populations.  相似文献   

8.
We report a study of genome-wide, dense SNP (∼900K) and copy number polymorphism data of indigenous southern Africans. We demonstrate the genetic contribution to southern and eastern African populations, which involved admixture between indigenous San, Niger-Congo-speaking and populations of Eurasian ancestry. This finding illustrates the need to account for stratification in genome-wide association studies, and that admixture mapping would likely be a successful approach in these populations. We developed a strategy to detect the signature of selection prior to and following putative admixture events. Several genomic regions show an unusual excess of Niger-Kordofanian, and unusual deficiency of both San and Eurasian ancestry, which were considered the footprints of selection after population admixture. Several SNPs with strong allele frequency differences were observed predominantly between the admixed indigenous southern African populations, and their ancestral Eurasian populations. Interestingly, many candidate genes, which were identified within the genomic regions showing signals for selection, were associated with southern African-specific high-risk, mostly communicable diseases, such as malaria, influenza, tuberculosis, and human immunodeficiency virus/AIDs. This observation suggests a potentially important role that these genes might have played in adapting to the environment. Additionally, our analyses of haplotype structure, linkage disequilibrium, recombination, copy number variation and genome-wide admixture highlight, and support the unique position of San relative to both African and non-African populations. This study contributes to a better understanding of population ancestry and selection in south-eastern African populations; and the data and results obtained will support research into the genetic contributions to infectious as well as non-communicable diseases in the region.  相似文献   

9.
Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∼36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogroups (the NE1 haplogroup) aligns with the Neandertal haplotype and contains a 4.6-kb deletion polymorphism in perfect linkage disequilibrium with 12 single nucleotide polymorphisms (SNPs) across diverse populations. The other haplogroup, which does not contain the 4.6-kb deletion, aligns with the chimpanzee haplotype and is likely ancestral. Africans have higher overall pairwise differences with the Neandertal haplotype than Eurasians do for this NE1 locus (p<10−15). Moreover, the nucleotide diversity at this locus is higher in Eurasians than in Africans. These results mimic signatures of recent Neandertal admixture contributing to this locus. However, an in-depth assessment of the variation in this region across multiple populations reveals that African NE1 haplotypes, albeit rare, harbor more sequence variation than NE1 haplotypes found in Europeans, indicating an ancient African origin of this haplogroup and refuting recent Neandertal admixture. Population genetic analyses of the SNPs within each of these haplogroups, along with genome-wide comparisons revealed significant FST (p = 0.00003) and positive Tajima''s D (p = 0.00285) statistics, pointing to non-neutral evolution of this locus. The NE1 locus harbors no protein-coding genes, but contains transcribed sequences as well as sequences with putative regulatory function based on bioinformatic predictions and in vitro experiments. We postulate that the variation observed at this locus predates Human–Neandertal divergence and is evolving under balancing selection, especially among European populations.  相似文献   

10.
One of the main findings derived from the analysis of the Neandertal genome was the evidence for admixture between Neandertals and non-African modern humans. An alternative scenario is that the ancestral population of non-Africans was closer to Neandertals than to Africans because of ancient population substructure. Thus, the study of North African populations is crucial for testing both hypotheses. We analyzed a total of 780,000 SNPs in 125 individuals representing seven different North African locations and searched for their ancestral/derived state in comparison to different human populations and Neandertals. We found that North African populations have a significant excess of derived alleles shared with Neandertals, when compared to sub-Saharan Africans. This excess is similar to that found in non-African humans, a fact that can be interpreted as a sign of Neandertal admixture. Furthermore, the Neandertal''s genetic signal is higher in populations with a local, pre-Neolithic North African ancestry. Therefore, the detected ancient admixture is not due to recent Near Eastern or European migrations. Sub-Saharan populations are the only ones not affected by the admixture event with Neandertals.  相似文献   

11.
Older Puerto Ricans living in the continental U.S. suffer from higher rates of diabetes, obesity, cardiovascular disease and depression compared to non-Hispanic White populations. Complex diseases, such as these, are likely due to multiple, potentially interacting, genetic, environmental and social risk factors. Presumably, many of these environmental and genetic risk factors are contextual. We reasoned that racial background may modify some of these risk factors and be associated with health disparities among Puerto Ricans. The contemporary Puerto Rican population is genetically heterogeneous and originated from three ancestral populations: European settlers, native Taíno Indians, and West Africans. This rich-mixed ancestry of Puerto Ricans provides the intrinsic variability needed to untangle complex gene–environment interactions in disease susceptibility and severity. Herein, we determined whether a specific ancestral background was associated with either of four major disease outcomes (diabetes, obesity, cardiovascular disease, and depression). We estimated the genetic ancestry of 1,129 subjects from the Boston Puerto Rican Health Study based on genotypes of 100 ancestry informative markers (AIMs). We examined the effects of ancestry on tests of association between single AIMs and disease traits. The ancestral composition of this population was 57.2% European, 27.4% African, and 15.4% Native American. African ancestry was negatively associated with type 2 diabetes and cardiovascular disease, and positively correlated with hypertension. It is likely that the high prevalence rate of diabetes in Africans, Hispanics, and Native Americans is not due to genetic variation alone, but to the combined effects of genetic variation interacting with environmental and social factors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Genetic diversity and population structure of 113 chicken populations from Africa, Asia and Europe were studied using 29 microsatellite markers. Among these, three populations of wild chickens and nine commercial purebreds were used as reference populations for comparison. Compared to commercial lines and chickens sampled from the European region, high mean numbers of alleles and a high degree of heterozygosity were found in Asian and African chickens as well as in Red Junglefowl. Population differentiation (FST) was higher among European breeds and commercial lines than among African, Asian and Red Junglefowl populations. Neighbour‐Net genetic clustering and structure analysis revealed two main groups of Asian and north‐west European breeds, whereas African populations overlap with other breeds from Eastern Europe and the Mediterranean region. Broilers and brown egg layers were situated between the Asian and north‐west European clusters. structure analysis confirmed a lower degree of population stratification in African and Asian chickens than in European breeds. High genetic differentiation and low genetic contributions to global diversity have been observed for single European breeds. Populations with low genetic variability have also shown a low genetic contribution to a core set of diversity in attaining maximum genetic variation present from the total populations. This may indicate that conservation measures in Europe should pay special attention to preserving as many single chicken breeds as possible to maintain maximum genetic diversity given that higher genetic variations come from differentiation between breeds.  相似文献   

13.
14.
Admixed populations such as African Americans and Hispanic Americans present both challenges and opportunities in genetic epidemiologic research. Because of variation in admixture levels among individuals, case-control association studies may be subject to stratification bias. On the other hand, admixed populations also present special opportunities both for examining the role of genetic and environmental factors for observed racial/ethnic differences, and for possibly mapping alleles that contribute to such differences. Here we examined the distribution and relationship of individual admixture (IA) estimates with BMI and three measures of blood pressure in two admixed populations in the NHLBI Family Blood Pressure Program (FBPP): African Americans and Mexican Americans. For the African Americans, we observed modest but significant differences in average African IA among four recruitment sites. We observed a slight excess of African IA among hypertensives compared to normotensives, and a positive (non-significant) regression of African IA on blood pressure in untreated participants. Within Mexican Americans, we found no difference in average IA between hypertensives and normotensives, but a positive (marginally significant) regression of African IA on diastolic blood pressure. We also observed a significant positive regression of Caucasian IA (and negative regression of Native American IA) on BMI. Our results are suggestive of genetic differences between Africans and non-Africans that influence blood pressure, but such effects are likely to be modest compared to environmental ones. Excess obesity among Native Americans compared to whites is not consistent with a simple genetic explanation.  相似文献   

15.
Although human bitter taste perception is hypothesized to be a dietary adaptation, little is known about genetic signatures of selection and patterns of bitter taste perception variability in ethnically diverse populations with different diets, particularly from Africa. To better understand the genetic basis and evolutionary history of bitter taste sensitivity, we sequenced a 2,975 bp region encompassing TAS2R38, a bitter taste receptor gene, in 611 Africans from 57 populations in West Central and East Africa with diverse subsistence patterns, as well as in a comparative sample of 132 non-Africans. We also examined the association between genetic variability at this locus and threshold levels of phenylthiocarbamide (PTC) bitterness in 463 Africans from the above populations to determine how variation influences bitter taste perception. Here, we report striking patterns of variation at TAS2R38, including a significant excess of novel rare nonsynonymous polymorphisms that recently arose only in Africa, high frequencies of haplotypes in Africa associated with intermediate bitter taste sensitivity, a remarkably similar frequency of common haplotypes across genetically and culturally distinct Africans, and an ancient coalescence time of common variation in global populations. Additionally, several of the rare nonsynonymous substitutions significantly modified levels of PTC bitter taste sensitivity in diverse Africans. While ancient balancing selection likely maintained common haplotype variation across global populations, we suggest that recent selection pressures may have also resulted in the unusually high level of rare nonsynonymous variants in Africa, implying a complex model of selection at the TAS2R38 locus in African populations. Furthermore, the distribution of common haplotypes in Africa is not correlated with diet, raising the possibility that common variation may be under selection due to their role in nondietary biological processes. In addition, our data indicate that novel rare mutations contribute to the phenotypic variance of PTC sensitivity, illustrating the influence of rare variation on a common trait, as well as the relatively recent evolution of functionally diverse alleles at this locus.  相似文献   

16.
17.
Tropical sub-Saharan regions are considered to be the geographical origin of Drosophila melanogaster. Starting from there, the species colonized the rest of the world after the last glaciation about 10 000 years ago. Consistent with this demographic scenario, African populations have been shown to harbour higher levels of microsatellite and sequence variation than cosmopolitan populations. Nevertheless, limited information is available on the genetic structure of African populations. We used X chromosomal microsatellite variation to study the population structure of D. melanogaster populations using 13 sampling sites in North, West and East Africa. These populations were compared to six European and one North American population. Significant population structure was found among African D. melanogaster populations. Using a Bayesian method for inferring population structure we detected two distinct groups of populations among African D. melanogaster. Interestingly, the comparison to cosmopolitan D. melanogaster populations indicated that one of the divergent African groups is closely related to cosmopolitan flies. Low, but significant levels of differentiation were observed for sub-Saharan D. melanogaster populations from West and East Africa.  相似文献   

18.
As human populations dispersed throughout the world, they were subjected to new selective forces, which must have led to local adaptation via natural selection and hence altered patterns of genetic variation. Yet, there are very few examples known in which such local selection has clearly influenced human genetic variation. A potential approach for detecting local selection is to screen random loci across the genome; those loci that exhibit unusually large genetic distances between human populations are then potential markers of genomic regions under local selection. We investigated this approach by genotyping 332 short tandem repeat (STR) loci in Africans and Europeans and calculating the genetic differentiation for each locus. Patterns of genetic diversity at these loci were consistent with greater variation in Africa and with local selection operating on populations as they moved out of Africa. For 11 loci exhibiting the largest genetic differences, we genotyped an additional STR locus located nearby; the genetic distances for these nearby loci were significantly larger than average. These genomic regions therefore reproducibly exhibit larger genetic distances between populations than the "average" genomic region, consistent with local selection. Our results demonstrate that genome scans are a promising means of identifying candidate regions that have been subjected to local selection.  相似文献   

19.
The Siddis are a tribal group of African origin living in Karnataka, India. They have undergone considerable cultural change due to their proximity to neighboring population groups. To understand the biological consequences of these changes, we describe the genomic structure of the Siddis and the contribution from putative ancestral populations using 20 autosomal DNA markers. The distribution of Alu indel markers and a genetic distance analysis reveals their closer affinities with Africans. The levels of genomic diversity and heterozygosity are high in all the populations of southern India. Genetic admixture analysis reveals a predominant contribution from Africans, a lesser contribution from south Indians, and a slight one from Europeans. There is no evidence of gametic disequilibrium in the Siddis. The genetic homogeneity of the Siddis, in spite of its admixed origin, suggests the utility of this population for genetic epidemiological studies.  相似文献   

20.
Genetic variations of AA genome Oryza species measured by MITE-AFLP   总被引:5,自引:0,他引:5  
MITEs (miniature inverted-repeat transposable elements) are the major transposable elements in Oryza species. We have applied the MITE-AFLP technique to study the genetic variation and species relationship in the AA-genome Oryza species. High polymorphism was detected within and between species. The genetic variation in the cultivated species, Oryza sativa and Oryza glaberrima, was comparatively lower than in their ancestral wild species. In comparison between geographical lineages of the AA genome species, African taxa, O. glaberrima and Oryza barthii, showed lower variation than the Asian taxa, O. sativa, Oryza rufipogon, and Oryza nivara, and Australian taxon Oryza meridionalis. However, another African taxon, Oryza longistaminata, showed high genetic variation. Species relationships were analyzed by the pattern of presence or absence of homologous fragments, because nucleotide sequences of the detected MITE-AFLP fragments revealed that the same fragments in different species shared very high sequence homology. The clustering pattern of the AA-genome species matched well with the geographical origins (Asian, African and Australian), and with the Australian taxon being distant to the others. Therefore, this study demonstrated that the MITE-AFLP technique is amenable for studying the genetic variation and species relationship in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号