首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang D  Zhou G  Liu B  Kong Y  Chen N  Qiu Q  Yin H  An J  Zhang F  Chen F 《Plant physiology》2011,157(2):608-619
Numerous auxiliary nuclear factors have been identified to be involved in the dynamics of the photosystem II (PSII) complex. In this study, we characterized the high chlorophyll fluorescence243 (hcf243) mutant of Arabidopsis (Arabidopsis thaliana), which shows higher chlorophyll fluorescence and is severely deficient in the accumulation of PSII supercomplexes compared with the wild type. The amount of core subunits was greatly decreased, while the outer antenna subunits and other subunits were hardly affected in hcf243. In vivo protein-labeling experiments indicated that the synthesis rate of both D1 and D2 proteins decreased severely in hcf243, whereas no change was found in the rate of other plastid-encoded proteins. Furthermore, the degradation rate of the PSII core subunit D1 protein is higher in hcf243 than in the wild type, and the assembly of PSII is retarded significantly in the hcf243 mutant. HCF243, a nuclear gene, encodes a chloroplast protein that interacts with the D1 protein. HCF243 homologs were identified in angiosperms with one or two copies but were not found in lower plants and prokaryotes. These results suggest that HCF243, which arose after the origin of the higher plants, may act as a cofactor to maintain the stability of D1 protein and to promote the subsequent assembly of the PSII complex.  相似文献   

2.
To gain insight into the biogenesis of photosystem II (PSII) and to identify auxiliary factors required for this process, we characterized the mutant hcf173 of Arabidopsis thaliana. The mutant shows a high chlorophyll fluorescence phenotype (hcf) and is severely affected in the accumulation of PSII subunits. In vivo labeling experiments revealed a drastically decreased synthesis of the reaction center protein D1. Polysome association experiments suggest that this is primarily caused by reduced translation initiation of the corresponding psbA mRNA. Comparison of mRNA steady state levels indicated that the psbA mRNA is significantly reduced in hcf173. Furthermore, the determination of the psbA mRNA half-life revealed an impaired RNA stability. The HCF173 gene was identified by map-based cloning, and its identity was confirmed by complementation of the hcf phenotype. HCF173 encodes a protein with weak similarities to the superfamily of the short-chain dehydrogenases/reductases. The protein HCF173 is localized in the chloroplast, where it is mainly associated with the membrane system and is part of a higher molecular weight complex. Affinity chromatography of an HCF173 fusion protein uncovered the psbA mRNA as a component of this complex.  相似文献   

3.
Hcf136 encodes a hydrophilic protein localized in the lumen of stroma thylakoids. Its mutational inactivation in Arabidopsis thaliana results in a photosystem II (PHII)-less phenotype. Under standard illumination, PSII is not detectable and the amount of photosystem I (PSI) is reduced, which implies that HCF136p may be required for photosystem biogenesis in general. However, at low light, a comparison of mutants with defects in PSII, PSI, and the cytochrome b(6)f complex reveals that HCF136p regulates selectively biogenesis of PSII. We demonstrate by in vivo radiolabeling of hcf136 that biogenesis of the reaction center (RC) of PSII is blocked. Gel blot analysis and affinity chromatography of solubilized thylakoid membranes suggest that HCF136p associates with a PSII precomplex containing at least D2 and cytochrome b(559). We conclude that HCF136p is essential for assembly of the RC of PSII and discuss its function as a chaperone-like assembly factor.  相似文献   

4.
5.
Hcf101-1 is a high-chlorophyll-fluorescence (hcf) Arabidopsis mutant that lacks photosystem I (1). Photosystem I subunits are synthesized in the mutant but do not assemble into a stable complex. hcf101 was isolated by map-based cloning and encodes an MRP-like protein with a nucleotide-binding domain. The protein is localized in the chloroplast stroma. In green tissue, the Hcf101 level is stimulated by light, and the protein is not detectable in roots. Two independent knock-out lines, hcf101-2 and hcf101-3, are also impaired in Hcf101 accumulation, although to different extents. Like hcf101-1, hcf101-2 and hcf01-3 are hcf mutants with impaired photosystem I. Our results indicate that Hcf101 is a novel component required for photosystem I biosynthesis.  相似文献   

6.
We have isolated the nuclear photosynthetic mutant hcf153 which shows reduced accumulation of the cytochrome b(6)f complex. The levels and processing patterns of the RNAs encoding the cytochrome b(6)f subunits are unaltered in the mutant. In vivo protein labeling experiments and analysis of polysome association revealed normal synthesis of the large chloroplast-encoded cytochrome b(6)f subunits. The mutation resulted from a T-DNA insertion and the affected nuclear gene was cloned. HCF153 encodes a 15 kDa protein containing a chloroplast transit peptide. Sequence similarity searches revealed that the protein is restricted to higher plants. A HCF153-Protein A fusion construct introduced into hcf153 mutant plants was able to substitute the function of the wild-type protein. Fractionation of intact chloroplasts from these transgenic plants suggests that most or all of the fusion protein is tightly associated with the thylakoid membrane. Our data show that the identified factor is a novel protein that could be involved in a post-translational step during biogenesis of the cytochrome b(6)f complex. It is also possible that HCF153 is necessary for translation of one of the very small subunits of the cytochrome b(6)f complex.  相似文献   

7.
8.
9.
To understand the biogenesis of the plastid cytochrome b(6)f complex and to identify the underlying auxiliary factors, we have characterized the nuclear mutant hcf164 of Arabidopsis and isolated the affected gene. The mutant shows a high chlorophyll fluorescence phenotype and is severely deficient in the accumulation of the cytochrome b(6)f complex subunits. In vivo protein labeling experiments indicated that the mutation acts post-translationally by interfering with the assembly of the complex. Because of its T-DNA tag, the corresponding gene was cloned and its identity confirmed by complementation of homozygous mutant plants. HCF164 encodes a thioredoxin-like protein that possesses disulfide reductase activity. The protein was found in the chloroplast, where it is anchored to the thylakoid membrane at its lumenal side. HCF164 is closely related to the thioredoxin-like protein TxlA of Synechocystis sp PCC6803, most probably reflecting its evolutionary origin. The protein also shows a limited similarity to the eubacterial CcsX and CcmG proteins, which are required for the maturation of periplasmic c-type cytochromes. The putative roles of HCF164 for the assembly of the cytochrome b(6)f complex are discussed.  相似文献   

10.
We have characterized a nuclear mutant of barley, viridis-115, lacking photosystem II (PSII) activity and compared it to wild-type seedlings during light-induced chloroplast development. Chloroplasts isolated from wild-type and viridis-115 seedlings illuminated for 1 h synthesized similar polypeptides and had similar protein composition. After 16 h of illumination, however, mutant plastids exhibited reduced ability to radiolabel D1, CP47, and several low Mr membrane polypeptides, and by 72 h, synthesis of these proteins was undetectable. Immunoblot analysis showed that plastids of dark-grown wild-type barley lacked several PSII proteins (D1, D2, CP47, and CP43) and that 16 h of illumination resulted in the accumulation of these polypeptides. In contrast, these polypeptides did not accumulate in illuminated viridis-115 seedlings, although mutant plastids accumulated two PSII proteins that participate in oxygen evolution, oxygen-evolving enhancers 1 and 3. Northern analysis showed that the levels of psbA and psbB mRNA in mutant plastids were equal to or greater than levels in wild-type plastids throughout the developmental period examined here. These results indicate that the nuclear mutation present in viridis-115 affects the translation and stability of the chloroplast-encoded D1 and CP47 polypeptides and that its influence is expressed after the onset of light-induced chloroplast development.  相似文献   

11.
12.
13.
14.
15.
16.
17.
PSII-X is a small hydrophobic protein, which is universally present in photosystem II (PSII) core complex among cyanobacteria and plants. The role of PSII-X was studied by directed mutagenesis and biochemical analysis in the thermophilic cyanobacterium Synechococcus elongatus. The psbX-disrupted mutant could grow photoautotrophically indicative of non-essential function, while it showed growth defect under low CO(2) conditions. An active O(2)-evolving PSII complex was successfully isolated from the mutant and wild type. Protein composition of the isolated PSII complex was the same as wild type except for the absence of PSII-X. O(2) evolution supported by artificial quinones was affected in the psbX-disrupted mutant. At high concentration of 2,6-dichlorobenzoquinone or 2,6-dimethylbenzoquinone, the mutant showed much lower activity than wild type, while not much difference was found at low concentration. These results imply that binding or turnover of quinones at the Q(B) site depends, at least in part, on PSII-X protein in the PSII complex. Gel filtration chromatography of the PSII complex revealed that the dimeric structure of the complex was not greatly affected in the psbX-disrupted mutant.  相似文献   

18.
A 4.4-kb HindIII fragment, encoding an unusual rubredoxin (denoted RubA), a homolog of the Synechocystis sp. PCC 6803 gene slr2034 and Arabidopsis thaliana HCF136, and the psbEFLJ operon, was cloned from the cyanobacterium Synechococcus sp. PCC 7002. Inactivation of the slr2034 homolog produced a mutant with no detectable phenotype and wild-type photosystem (PS) II levels. Inactivation of the rubA gene of Synechococcus sp. PCC 7002 produced a mutant unable to grow photoautotrophically. RubA and PS I electron transport activity were completely absent in the mutant, although PS II activity was approximately 80% of the wild-type level. RubA contains a domain of approximately 50 amino acids with very high similarity to the rubredoxins of anaerobic bacteria and archaea, but it also contains a region of about 50 amino acids that is predicted to form a flexible hinge and a transmembrane alpha-helix at its C terminus. Overproduction of the water-soluble rubredoxin domain in Escherichia coli led to a product with the absorption and EPR spectra of typical rubredoxins. RubA was present in thylakoid but not plasma membranes of cyanobacteria and in chloroplast thylakoids isolated from spinach and Chlamydomonas reinhardtii. Fractionation studies suggest that RubA might transiently associate with PS I monomers, but no evidence for an association with PS I trimers or PS II was observed. PS I levels were significantly lower than in the wild type ( approximately 40%), but trimeric PS I complexes could be isolated from the rubA mutant. These PS I complexes completely lacked the stromal subunits PsaC, PsaD, and PsaE but contained all membrane-intrinsic subunits. The three missing proteins could be detected immunologically in whole cells, but their levels were greatly reduced, and degradation products were also detected. Our results indicate that RubA plays a specific role in the biogenesis of PS I.  相似文献   

19.
Both chlorophyll a and b and polypeptides of the photosynthetic apparatus are found in gymnosperm seedlings. germinated and grown in absolute darkness. The photosystem II (PSII) activity is, however, limited, probably due to an inactive oxygen evolving system. In the present study dark-grown seedlings of Scots pine ( Pinus sylvestris L.) were transferred to light and changes in antenna size and the activation process of PSII were investigated using fluorescence measurements and quantitative western blotting. It was found that the activation process is rapid, requires very little light and that strong light inhibits the process. It takes place without any changes in the primary reactions of PSII. Furthermore, all polypeptides except the major light-harvesting chlorophyll a/b -binding protein complex of PSII (LHCII) were present in dark-grown seedlings in amounts comparable to the light treated control. The dark-grown seedlings had the same LHCII polypeptide composition as light treated seedlings, and the LHCII present seemed to be fully connected to the reaction centre. The results indicate that activation of PSII in dark-grown conifer seedlings resembles the photoactivation process of angiosperms. This implies that the fundamental processes in the assembly of the photosystem II complex is the same in all plants, but that the regulation differs between different taxa.  相似文献   

20.
Ma J  Peng L  Guo J  Lu Q  Lu C  Zhang L 《The Plant cell》2007,19(6):1980-1993
To elucidate the molecular mechanism of photosystem II (PSII) assembly, we characterized the low psii accumulation2 (lpa2) mutant of Arabidopsis thaliana, which is defective in the accumulation of PSII supercomplexes. The levels and processing patterns of the RNAs encoding the PSII subunits are unaltered in the mutant. In vivo protein-labeling experiments showed that the synthesis of CP43 (for chlorophyll a binding protein) was greatly reduced, but CP47, D1, and D2 were synthesized at normal rates in the lpa2-1 mutant. The newly synthesized CP43 was rapidly degraded in lpa2-1, and the turnover rates of D1 and D2 were higher in lpa2-1 than in wild-type plants. The newly synthesized PSII proteins were assembled into PSII complexes, but the assembly of PSII was less efficient in the mutant than in wild-type plants. LPA2 encodes an intrinsic thylakoid membrane protein, which is not an integral subunit of PSII. Yeast two-hybrid assays indicated that LPA2 interacts with the PSII core protein CP43 but not with the PSII reaction center proteins D1 and D2. Moreover, direct interactions of LPA2 with Albino3 (Alb3), which is involved in thylakoid membrane biogenesis and cell division, were also detected. Thus, the results suggest that LPA2, which appears to form a complex with Alb3, is involved in assisting CP43 assembly within PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号