首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of myoglobin, cytochrome c, and cytochrome P-450 LM-2 isolated from rabbit liver microsomes with detergents of type A (TM 3-12, Tween 20, Triton N-101) and detergent of B type (sodium cholate) in aqueous media were studied. These interactions are accompanied by a decrease in the Soret band intensity for all three hemoproteins. The rate of this process depends on the nature and concentration of the detergent as well as on temperature. The rate of the Soret band decrease is maximal for the zwitter-ionic surfactant TM 3-12. The rate constants of hemoprotein transformation depend on the detergent concentration. The detergent effects on the conformation and structure of the protein were demonstrated, using CD spectra and second derivatives of the absorption spectra of the hemoproteins in the presence of the detergents. The activation energies for myoglobin transformation in the presence of various detergents are equal to 17-23 kcal/mol and possibly reflect the cleavage of the coordinative heme-apoprotein bonds. A model of detergent interaction with hemoproteins is discussed. According to this model, the bimolecular interaction of the proteins with surfactants is observed at the detergent concentrations that are much lower than those for critical micelle formation values.  相似文献   

2.
Polyacrylamide gradient gel electrophoresis was carried out in micellar solutions of various detergents which differ in degree of potency to denature proteins. From the application of this method to band 3 protein from erythrocyte membranes, it was suggested that the procedure was useful in studying the molecular state of membrane proteins.The electrophoretic behaviors of human and bovine band 3 protein did not show any species specificity in either a denature state and a state resembling the native state. As well as in nonionic detergent solutions, the dimeric and tetrameric structures of bovine band 3 protein were preserved in sodium deoxycholate solution, in which protein complexes maintained in nonionic detergent solutions are frequently dissociated. Even in dodecyltrimethylammonium bromide solution, which is a denaturant for water-soluble proteins, part of the band 3 protein was still present as the oligomer. The results suggest that the oligomeric form of band 3 protein is the stable structure and that the dimer and tetramer possibly coexist in membranes.  相似文献   

3.
S-acylated peptides have many potential uses for elucidating the biophysical, structural and other properties of the numerous S-acylated proteins of mammalian cells. However, with the currently available reagents, preparation of specifically S-acylated derivatives of peptides is generally laborious or simply unfeasible. We here show that novel, easily preparable aryl and alkyl thioester derivatives of palmitic acid can mediate S-acylation of peptides corresponding to physiologically S-acylated sequences from the proteins p56(lck) and H-ras and the Po glycoprotein of peripheral myelin, with high selectivity for cysteine over other amino acid functional groups (including hydroxyl and both alpha- and epsilon-amino residues), and with much greater efficiency than is obtained using acyl-coenzyme A derivatives. Efficient and selective S-acylation can be accomplished under very mild conditions in aqueous systems containing lipid vesicles or detergent micelles, or in homogenous aqueous/acetonitrile mixtures. Using these novel thioesterifying reagents, we confirm previous suggestions that the N-terminal cysteine residue of Hedgehog proteins can exhibit rapid, uncatalyzed S-to-N acyl transfer following S-acylation to produce the N-palmitoylated amino terminus found in the mature protein. By contrast, we demonstrate that spontaneous S-to-N acyl transfer from the cysteine to the terminal glycine residue in the amino-terminal peptide of G(alphas) is far less rapid and is likely too slow to explain the physiological N-palmitoylation of the amino terminus of this protein.  相似文献   

4.
The organization of erythrocyte membrane lipids and proteins has been studied following the release of cytoplasmic components with the non-ionic detergent Triton X-100. After detergent extraction, a detergent-resistant complex called the erythrocyte cytoskeleton is separated from detergent, solubilized lipid and protein by sucrose buoyant density sedimentation. In cytoskeletons prepared under isotonic conditions all of the major erythrocyte membrane proteins are retained except for the integral protein, glycophorin, which is quantitatively solubilized and another integral glycoprotein, band 3, which is only 60% removed. When cytoskeletons are prepared in hypertonic KCl solutions, band 3 is fully solubilized along with bands 2.1 and 4.2 and several minor components. The resulting cytoskeletons have the same morphology as those prepared in isotonic buffer but they are composed of only three major peripheral proteins, spectrin, actin and band 4.1. We have designated this peripheral protein complex the 'shell' of the erythrocyte membrane, and have shown that the attachment of band 3 to the shell satisfies the criteria for a specific interaction. Although Triton did affect erythrocyte shape, cytoskeleton lipid content and the activity of membrane proteases, there was no indication that Triton altered the attachment of band 3 to the shell. We suggest that band 3 attaches to the shell as part of a ternary complex of bands 2.1, 3 and 4.2.  相似文献   

5.
Li C  Takazaki S  Jin X  Kang D  Abe Y  Hamasaki N 《Biochemistry》2006,45(39):12117-12124
In this study, we used peptide mapping combined with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI MS) to examine the methionine oxidation of band 3 of erythrocyte membrane protein. Initially, we identified the methionine sites oxidized by chloramine T (N-chloro-p-toluenesulfoamide), a hydrophilic reagent. There were three oxidized methionines (Met 559, Met 741, and Met 909) in band 3, and these methionines were located in a hydrophilic region determined by previous topological studies of band 3. In addition, we found that C12E8, a polyoxyethylene detergent, leads to the oxidation of methionines in a transmembrane segment in band 3, and this oxidation occurs in a C12E8 preincubation time-dependent manner. In a previous study, it was found that peroxides accumulate in a polyoxyethylene detergent. Thus, our method enabled the direct and quantitative detection of protein damage due to detergent peroxides. Furthermore, we examined methionine oxidation in the presence of 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethyl pyrocarbonate (DEPC), which induced either an outward or an inward conformation in band 3, respectively. Our results indicated that the location of Met 741 was associated with the band 3 conformation induced by band 3-mediated anion transport. In conclusion, we found that methionine oxidation can be applied to examine membrane protein structures as follows: (1) for topological studies of membrane proteins, (2) for assessing the quality of proteins in detergent solubilization studies, and (3) for the detection of conformational changes in membrane proteins.  相似文献   

6.
Published data regarding the interaction of long-chain acyl CoA derivatives with the protein and phospholipid constituents of biological membranes is reviewed and discussed in relationship to the premise that such interactions may lead to membrane damage during pathological situations. The topics considered include: the detergent properties of long-chain CoA, the interaction with membrane-associated enzymes, biological membranes, or model membrane systems, and the binding to a soluble protein that may facilitate intracellular transport. The effects of long-chain acyl CoA on heart mitochondria and the relevance of such studies to myocardial ischemia also is emphasized.  相似文献   

7.
The activator of the Ca2+-stimulated ATPase of erythrocyte membranes was purified 13,000-fold to homogeneity from human erythrocytes. The protein gave a single band upon electrophoresis both with and without detergent, and upon isoelectric focusing. This protein was compared with Ca2+-binding modulator proteins from bovine brain and rat testis. All three proteins were homogeneous and co-migrated on electrophoresis both in the presence of detergent and without detergent at pH values on both sides of the isoelectric point of the protein. The amino acid compositions of the three proteins were nearly indistinguishable, and all three proteins contained 1 residue of the unusual amino acid, trimethyllysine. All three were also indistinguishable as measured by their ability to further stimulate the Ca2+-stimulated ATPase of human erythrocyte membranes. Thus, we conclude that they represent functionally the same protein. Upon storage of all three proteins, a second band was detectable by detergent gel electrophoresis; the biochemical activity and the behavior on nondetergent gels were not changed. The presence of this second band is probably responsible for previous reports of differences between the rat testis and bovine brain modulator protein. The possibility is discussed that this protein is a general intracellular Ca2+ receptor, which mediates the activities of Ca2+ as an intracellular messenger.  相似文献   

8.
Using a helix-loop-helix construct consisting of the adjacent transmembrane segments 3 and 4 of the cystic fibrosis transmembrane conductance regulator (CFTR) labeled with pyrene at both N and C termini, we describe a system for the study of intramolecular helix-helix interactions within a polytopic membrane protein. Through measurement of pyrene excimer band intensity as a determinant of helix-helix proximity, we show that the helices retain tertiary contacts in detergent micelles. Notably, the nature of the micellar detergent can alter the stability of these contacts, with perfluorooctanoate highly supportive, lysophosphatidylcholine and lysophosphatidylglycerol somewhat less tolerant, and SDS largely intolerant of such interactions. This construct is further employed to study the role of the acyl chain length of micellar detergents in modulating interhelical packing; detergents having acyl chains of 9 carbons display the greatest extent of helical packing. These results provide important information regarding the role of lipids on membrane protein folding and conformation as well as demonstrate the usefulness of a pyrene-based system in studying the forces that govern interhelical packing.  相似文献   

9.
This paper reviews characteristics of microsomal membrane structure; long chain fatty acids, acyl CoA derivatives, retinoids and the microsomal formation of acyl CoA derivatives and retinyl esters. It is analyzed how the movement of these molecules at the intracellular level is affected by their respective binding proteins (Fatty acid binding protein, acyl CoA binding protein and cellular retinol binding protein). Studies with model systems using these hydrophobic ligands and the lipid-binding or transfer proteins are also described. This topic is of interest especially because in the esterification of retinol the three substrates and the three binding proteins may interact. (Mol Cell Biochem20: 89–94, 1993)Abbreviations FABP(s) Fatty Acid Binding Protein(s) - CRBP Cellular Retinol Binding Protein - ACBP Acyl-CoA-Binding Protein  相似文献   

10.
Isoprenylation is an important posttranslational modification that affects the activity, subunit interactions and membrane anchoring of different eukaryotic proteins. The small, cell-wall-less prokaryote Acholeplasma laidlawii has more than 20 membrane acyl-proteins enriched in myristoyl and palmitoyl chains. Radioactive mevalonate, a precursor to isoprenoids, was incorporated into several specific membrane proteins of 20 to 45 kDa and two soluble proteins of 23-25 kDa, respectively. No acyl proteins and none of the polar acyl lipids became labelled but these are all labelled by radioactive fatty acids. Mevalonate was incorporated mainly into a minor neutral, non-saponifiable lipid which migrated just above a C30-isoprenoid (squalene) on TLC-plates. The isoprenoid chains could not be released by mild alkaline hydrolysis from most of the isoprenylated proteins, although this procedure releases acyl chains from lipids and all acylated proteins. Isoprenylated proteins were enriched in the detergent phase upon partition with the non-ionic detergent Triton X-114. This behaviour is similar to the acyl proteins of this organism and indicates that the isoprenoid chains give the proteins a hydrophobic character.  相似文献   

11.
The two major membrane glycoproteins of human red cells, glycophorin and band 3, the anion exchange protein, were isolated from cells exofacially labeled with fluorescein and reconstituted into vesicles with defined transmembrane disposition. Uniform orientation of polypeptides was accomplished by two procedures: Vesicles with single protein units were obtained by a one-step dilution of a protein/detergent suspension with a vast excess of phospholipid. Vesicles with uniform orientation of protein were selected by affinity chromatography on derivatized Sepharoses (organomercurial, wheat germ agglutinin, aminoethyl or diethylaminoethyl). Vesicles with multiple protein units with uniform orientation were generated by vectorial immobilization of detergent solubilized proteins on the above affinity matrices and in situ formation of proteoliposomes by detergent substitution for phospholipid. The proteoliposomes were released from the column by addition of excess free ligand. The orientation of band 3 and glycophorin in the reconstituted vesicles was first assessed by immunofluorescence quenching, using anti-fluorescein antibodies, to quantitatively quench fluorescein residues exposed on the outer surface of vesicles. Further assessment was achieved by chromatographing the vesicles through various affinity and ionic matrices. Vesicle populations of higher than 90% homogeneity in protein orientation (right-side-out or inside-out) were obtained with both procedures. The above methods provide a convenient experimental tool for the oriented reconstitution of proteins and the evaluation of their transmembrane disposition.  相似文献   

12.
A membrane protein that specifically binds the insect neuropeptide proctolin was purified using standard chromatography from cockroach foregut membranes. Proctolin-binding sites were efficiently solubilized with either the nonionic detergent digitonin or the zwitterionic detergent Chaps, as indicated by the specific binding of 3H-proctolin to solubilized samples. A solubilized sample obtained from 1600 foregut membranes was subjected to a five-step chromatographic purification including chromatofocusing, anion-exchange and size-exclusion chromatographies. The final size-exclusion separation resulted in the isolation of approximately 100 pmol of purified proctolin-binding proteins, eluting as a single peak at approximately 74 kDa. Analysis of the purified sample using SDS/PAGE and silver staining showed two bands at 80 kDa and 76 kDa. Densitometric analysis of the gel indicated that each band contained approximately 7-8 microg of protein, suggesting that one band corresponds to the proctolin-binding activity. Proctolin-binding proteins were thus purified 1800-fold using standard chromatography.  相似文献   

13.
N Bayan  H Thérisod 《FEBS letters》1989,255(2):330-334
We [(1989) FEBS Lett., in press] have previously shown that membrane vesicles from Escherichia coli contain protein-binding sites for the acyl carrier protein (ACP). We report now that membrane vesicles prepared from a strain amplified for glycerol-3-phosphate acyltransferase (GPAT) contain a higher number of ACP-binding sites than the membrane vesicles prepared from a wild type strain. In addition, we show that GPAT is retained specifically on an ACP-Sepharose affinity column and that [3H]ACP binds to the enzyme solubilized by detergent. We conclude that GPAT, an inner membrane protein which catalyses the transesterification of a fatty acyl group from acyl coenzyme A or acyl ACP to glycerol-3-phosphate, possesses a binding site for ACP.  相似文献   

14.
P K Werner  R A Reithmeier 《Biochemistry》1985,24(23):6375-6381
Band 3 protein, the anion transport protein of the human erythrocyte membrane, was purified in the presence of the nonionic detergent octyl glucoside. A molecular characterization was carried out to investigate whether the native structure of the protein was retained in the presence of this detergent. Band 3 bound octyl glucoside below the critical micelle concentration (cmc) of the detergent, approaching saturation above the cmc. At 40 mM octyl glucoside, close to saturating concentrations, 0.64 g of octyl glucoside is bound per gram of band 3 protein, corresponding to 208 molecules of detergent bound per monomer of band 3. Sedimentation velocity and gel filtration studies, performed at 40 mM octyl glucoside, indicated that the band 3-octyl glucoside complex had an average molecular weight of 1.98 X 10(6), which corresponds to a dodecamer. Sedimentation equilibrium experiments confirmed that band 3 in octyl glucoside exists in a heterogeneous and high oligomeric state. This high oligomeric state did not change dramatically over octyl glucoside concentrations ranging from 6 to 60 mM. The circular dichroism spectrum of band 3 changed only slightly over this range of octyl glucoside concentrations. The alpha-helical and beta-sheet contents of band 3 in 2 mM octyl glucoside were calculated to be 40% and 27%, respectively, indicating that no gross alteration in the secondary structure of the protein had occurred in octyl glucoside. The ability of band 3 to bind 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS), a potent inhibitor (Ki = 1 microM) of anion transport, was measured to assess the integrity of the inhibitor binding site of the protein in octyl glucoside.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In order to understand how subtle variations in lipid structure can influence the stability of an integral membrane protein, the purified, delipidated anion transport domain of human erythrocyte band 3 was reconstituted into a series of well-defined lipids and examined by differential scanning calorimetry. From the calorimetric scans, plots of denaturation temperature (Tm), enthalpy (delta Hd), and heat capacity (delta Cdp) as a function of phospholipid chain length, degree of unsaturation, headgroup type, and cholesterol content were constructed. The data show that the stability of the 55,000-dalton membrane-spanning domain of band 3 is exquisitely sensitive to the acyl chain length of its phospholipid environment, increasing almost linearly from a Tm of 47 degrees C in dimyristoleylphosphatidylcholine (C14:1) to 66 degrees C in dinervonylphosphatidylcholine (C24:1). The integral domain was also found to be significantly stabilized by increasing the degree of saturation of the fatty acyl chains and by elevating the cholesterol content of the membrane. Although band 3 was native in all reconstituted lipid systems, the transport protein's stability was clearly much greater in zwitterionic lipids (phosphatidylethanolamine and phosphatidylcholine) than anionic lipids (phosphatidylserine and phosphatidylglycerol). Enthalpy and delta Cdp values were generally within the ranges expected of globular proteins in the various reconstituted systems, except the values for the anionic and polyunsaturated phospholipids were anomalously low. Much of the data can be accounted for by the hypothesis that band 3 has a long hydrophobic cross-section and that a close match between the hydrophobic zone of the membrane-spanning protein and the nonpolar region of the bilayer is necessary for maximum protein stability. Because the integral domain of band 3 may be structurally representative of a larger group of transport proteins, the data should be useful in interpreting structural observations on protein-lipid interactions in other membrane systems.  相似文献   

16.
A method for implanting exogenous membrane proteins into recipient hepatoma cells is described. Red cell band 3 and Sendai virus envelope proteins HN and F were extracted from their respective sources and purified by centrifugation to equilibrium through sucrose step gradients in the presence of octyl-beta-D-glucopyranoside. 0.05-0.15 micron vesicles were formed by adding lipid to combined detergent solubilized, isolated membrane proteins and removing detergent by dialysis. The vesicles were hybrid band 3-Sendai envelope vesicles and not a mixture of two distinct vesicle types as judged by (1) the ability of Sendai specific antibody to immunoprecipitate greater than 99% of band 3 from vesicle suspensions and (2) comigration of band 3 and Sendai envelope proteins on isopyknic sucrose density gradients. The hybrid vesicles (virosomes) were not fusogenic but did bind to cultured hepatoma cells in the cold. Subsequent treatment of virosomes absorbed onto cultured cells with polyethylene glycol resulted in a stable association of 2-10% of added band 3 and Sendai envelope proteins with the cells. Efficient transfer of virosome-associated band 3 to the cells was dependent on both lipid and Sendai envelope proteins. Fluid phase marker transfer, immunofluorescence, and protease digestion experiments demonstrate that the majority of the virosomes were implanted into recipient hepatoma membranes and not simply adsorbed onto their surface or immediately endocytosed. The hybrid membrane protein-viral envelope vesicles thus offer an efficient means for insertion of foreign proteins into the membranes of recipient cultured cells.  相似文献   

17.
Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems, a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3?4 μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210±30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1.  相似文献   

18.
Stable noncovalent dimers of band 3 protein from human erythrocyte membranes, in which state the protein is thought to exist after solubilization by the nonionic detergent Triton X-100, do not occur when purified batches of the detergent are used. Instead, the protein is in a monomer/dimer/tetramer association equilibrium. The stable dimers do appear, however, when the detergent has been 'aged'. They thus seem to be artifacts.  相似文献   

19.
The enzyme acyl-CoA:1-acyl-sn-glycero-3-phosphoinositol acyltransferase (LPI acyltransferase, EC 2.3.1.23) was purified approximately 11,000-fold to near homogeneity from bovine heart muscle microsomes. The purification was effected by extraction with the detergent 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate, followed by chromatography on Cibacron blue agarose, DEAE-cellulose, and Matrex gel green A. The isolated enzyme was a single protein of 58,000 Da as measured by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate. This purification procedure also allows isolation of the related enzyme lysophosphatidylcholine (LPC) acyltransferase, which was separated from LPI acyltransferase at the final chromatographic step. The purified LPI acyltransferase exhibits an absolute specificity for LPI as the acyl acceptor. Broader specificity was found for acyl-CoA derivatives as substrates, although the preferred substrates are long-chain, unsaturated derivatives: measured reactivities were in the order arachidonoyl-CoA greater than oleoyl-CoA greater than eicosadienoyl-CoA greater than linoleoyl-CoA. Little activity was found with palmitoyl-CoA or stearoyl-CoA as potential substrates. These properties are consistent with a role of the enzyme in controlling the acyl group composition of phosphoinositides. Comparison of LPC acyltransferase and LPI acyltransferase shows that these two enzymes have distinct kinetic and physical properties and are affected differently by local anesthetics, which are potent inhibitors.  相似文献   

20.
The acid lipase of castor endosperm lipid bodies has been studied using colorimetric assay based on the measure of the hydrolytic activity of p-nitrophenyl ester of palmitate and other acyl derivatives. These substrates are compatible with the natural triacylglycerols for the measure of lipolytic activities. The subcellularly-surveyed acid lipolytic activity in the germinated castor bean endospermal tissue was found to be enhanced in the lipid bodies. The lipase, which is partially latent and tightly associated with lipid bodies, is an exceptionally stable enzyme with an optimum activity at pH 4.5 and displays an inverse relationship between its activity and the acyl chain length of its substrate. To facilitate isolation of the acid lipase, a procedure has been developed to solubilise the membrane-bound enzyme in an active form. The detergent-solubilised acid lipase after two chromatographic steps yielded an eight-fold active preparation which after gel permeation resolved as heterogeneous aggregate in excess of 500 kD. Lipase-enriched preparations showed consistent presence of 14 and 60 kD proteins which constituted the most abundant species of the lipid bodies. Although it has not been possible to obtain an active lipase preparation in a state free of either the 14 or 60 kD protein, the lipase activity in the detergent extracts of lipid bodies was immunoprecipitable with antibodies raised against the 60 kD component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号