首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Three models describing frameshift mutations are "classical" Streisinger slippage, proposed for repetitive DNA, and "misincorporatation misalignment" and "dNTP-stabilized misalignment," proposed for non-repetitive DNA. We distinguish between models using pre-steady state fluorescence kinetics to visualize transiently misaligned DNA intermediates and nucleotide incorporation products formed by DNA polymerases adept at making small frameshift mutations in vivo. Human polymerase (pol) mu catalyzes Streisinger slippage exclusively in repetitive DNA, requiring as little as a dinucleotide repeat. Escherichia coli pol IV uses dNTP-stabilized misalignment in identical repetitive DNA sequences, revealing that pol mu and pol IV use different mechanisms in repetitive DNA to achieve the same mutational end point. In non-repeat sequences, pol mu switches to dNTP-stabilized misalignment. pol beta generates -1 frameshifts in "long" repeats and base substitutions in "short" repeats. Thus, two polymerases can use two different frameshift mechanisms on identical sequences, whereas one polymerase can alternate between frameshift mechanisms to process different sequences.  相似文献   

2.
Paull TT 《Molecular cell》2005,19(3):294-296
At least three DNA polymerases participate in nonhomologous end joining in mammalian cells: pol mu, pol kappa, and TdT. A study in this issue of Molecular Cell (Nick McElhinny et al., 2005) clarifies the role of pol mu in end joining at the kappa light chain locus and also provides a biochemical explanation for the unique polymerization functions of pol mu on DNA ends.  相似文献   

3.
Three Pol X family members have been linked to nonhomologous end joining (NHEJ) in mammals. Template-independent TdT promotes diversity during NHEJ-dependent repair of V(D)J recombination intermediates, but the roles of the template-dependent polymerases mu and lambda in NHEJ remain unclear. We show here that pol mu and pol lambda are similarly recruited by NHEJ factors to fill gaps when ends have partially complementary overhangs, suggesting equivalent roles promoting accuracy in NHEJ. However, only pol mu promotes accuracy during immunoglobulin kappa recombination. This distinctive in vivo role correlates with the TdT-like ability of pol mu, but not pol lambda, to act when primer termini lack complementary bases in the template strand. However, unlike TdT, synthesis by pol mu in this context is primarily instructed by a template from another DNA molecule. This apparent gradient of template dependence is largely attributable to a small structural element that is present but different in all three polymerases.  相似文献   

4.
DNA polymerase mu (pol mu) is a member of the pol X family of DNA polymerases, and it shares a number of characteristics of both DNA polymerase beta (pol beta) and terminal deoxynucleotidyl transferase (TdT). Because pol beta has been shown to perform translesion DNA synthesis past cisplatin (CP)- and oxaliplatin (OX)-GG adducts, we determined the ability of pol mu to bypass these lesions. Pol mu bypassed CP and OX adducts with an efficiency of 14-35% compared to chain elongation on undamaged DNA, which is second only to pol eta in terms of bypass efficiency. The relative ability of pol mu to bypass CP and OX adducts was dependent on both template structure and sequence context. Since pol mu has been shown to be more efficient on gapped DNA templates than on primed single-stranded DNA templates, we determined the ability of pol mu to bypass Pt-DNA adducts on both primed single-stranded and gapped templates. The bypass of Pt-DNA adducts by pol mu was highly error-prone on all templates, resulting in 2, 3, and 4 nt deletions. We postulate that bypass of Pt-DNA adducts by pol mu may involve looping out the Pt-GG adduct to allow chain elongation downstream of the adduct. This reaction appears to be facilitated by the presence of a downstream "acceptor" and a gap large enough to provide undamaged template DNA for elongation past the adduct, although gapped DNA is clearly not required for bypass.  相似文献   

5.
DNA polymerases are defined as such because they use deoxynucleotides instead of ribonucleotides with high specificity. We show here that polymerase mu (pol mu), implicated in the nonhomologous end-joining pathway for repair of DNA double-strand breaks, incorporates both ribonucleotides and deoxynucleotides in a template-directed manner. pol mu has an approximately 1,000-fold-reduced ability to discriminate against ribonucleotides compared to that of the related pol beta, although pol mu's substrate specificity is similar to that of pol beta in most other respects. Moreover, pol mu more frequently incorporates ribonucleotides when presented with nucleotide concentrations that approximate cellular pools. We therefore addressed the impact of ribonucleotide incorporation on the activities of factors required for double-strand break repair by nonhomologous end joining. We determined that the ligase required for this pathway readily joined strand breaks with terminal ribonucleotides. Most significantly, pol mu frequently introduced ribonucleotides into the repair junctions of an in vitro nonhomologous end-joining reaction, an activity that would be expected to have important consequences in the context of cellular double-strand break repair.  相似文献   

6.
Although mammals encode multiple family X DNA polymerases implicated in DNA repair, Saccharomyces cerevisiae has only one, DNA polymerase IV (pol IV). To better understand the repair functions of pol IV, here we characterize its biochemical properties. Like mammalian pol beta and pol lambda, but not pol mu, pol IV has intrinsic 5'-2-deoxyribose-5-phosphate lyase activity. Pol IV has low processivity and can fill short gaps in DNA. Unlike the case with pol beta and pol lambda, the gap-filling activity of pol IV is not enhanced by a 5'-phosphate on the downstream primer but is stimulated by a 5'-terminal synthetic abasic site. Pol IV incorporates rNTPs into DNA with an unusually high efficiency relative to dNTPs, a property in common with pol mu but not pol beta or pol lambda. Finally, pol IV is highly inaccurate, with an unusual error specificity indicating the ability to extend primer termini with limited homology. These properties are consistent with a possible role for pol IV in base excision repair and with its known role in non-homologous end joining of double strand breaks, perhaps including those with damaged ends.  相似文献   

7.
Dixon MJ  Lahue RS 《DNA Repair》2002,1(9):763-770
Triplet repeats undergo frequent mutations in human families afflicted with certain neurodegenerative diseases and also in model organisms. Although the molecular mechanisms of triplet repeat instability are still being identified, it is likely that aberrant DNA synthesis plays an important role. Many DNA polymerases stall at triplet repeat sequences, probably due to the adoption of unusual DNA secondary structures. One possible mechanism to explain triplet repeat contractions is that a triplet repeat hairpin on the template strand inhibits replicative polymerases and that one or more bypass polymerases are recruited for synthesis past the hairpin. If the translesion synthesis is mutagenic, contractions can be generated. To address this possibility, Saccharomyces cerevisiae strains lacking either pol zeta (rev7), pol eta (rad30), or both were tested for trinucleotide repeat (TNR) contractions using three separate, sensitive genetic assays. If these bypass polymerases are important for mutagenesis, then the mutants should show a reduction in the contraction rate. Two genetic tests for triplet repeat contractions showed no significant change for the mutants compared to wild type. A third assay showed a five-fold reduction in contraction rates due to pol eta ablation. Despite this modest decrease, the overall contraction rate was still high, indicating that many deletions still occur in the absence of both polymerases. Expansion rates were also unaffected in the mutant strains. These results indicate that, in yeast, pol eta and pol zeta most likely have little role in triplet repeat mutagenesis.  相似文献   

8.
The solution structure and dynamics of the BRCT domain from human DNA polymerase mu, implicated in repair of chromosome breaks by nonhomologous end joining (NHEJ), has been determined using NMR methods. BRCT domains are typically involved in protein-protein interactions between factors required for the cellular response to DNA damage. The pol mu BRCT domain is atypical in that, unlike other reported BRCT structures, the pol mu BRCT is neither part of a tandem grouping, nor does it appear to form stable homodimers. Although the sequence of the pol mu BRCT domain has some unique characteristics, particularly the presence of >10% proline residues, it forms the characteristic alphabetaalpha sandwich, in which three alpha helices are arrayed around a central four-stranded beta-sheet. The structure of helix alpha1 is characterized by two solvent-exposed hydrophobic residues, F46 and L50, suggesting that this element may play a role in mediating interactions of pol mu with other proteins. Consistent with this argument, mutation of these residues, as well as the proximal, conserved residue R43, specifically blocked the ability of pol mu to efficiently work together with NHEJ factors Ku and XRCC4-ligase IV to join noncomplementary ends together in vitro. The structural, dynamic, and biochemical evidence reported here identifies a functional surface in the pol mu BRCT domain critical for promoting assembly and activity of the NHEJ machinery. Further, the similarity between the interaction regions of the BRCT domains of pol mu and TdT support the conclusion that they participate in NHEJ as alternate polymerases.  相似文献   

9.
T Uemori  Y Ishino  H Doi    I Kato 《Journal of bacteriology》1995,177(8):2164-2177
We cloned two genes encoding DNA polymerases from the hyperthermophilic archaeon Pyrodictium occultum. The deduced primary structures of the two gene products have several amino acid sequences which are conserved in the alpha-like (family B) DNA polymerases. Both genes were expressed in Escherichia coli, and highly purified gene products, DNA polymerases I and II (pol I and pol II), were biochemically characterized. Both DNA polymerase activities were heat stable, but only pol II was sensitive to aphidicolin. Both pol I and pol II have associated 5'-->3' and 3'-->5' exonuclease activities. In addition, these DNA polymerases have higher affinity to single-primed single-stranded DNA than to activated DNA; even their primer extension abilities by themselves were very weak. A comparison of the complete amino acid sequences of pol I and pol II with two alpha-like DNA polymerases from yeast cells showed that both pol I and pol II were more similar to yeast DNA polymerase III (ypol III) than to yeast DNA polymerase II (ypol II), in particular in the regions from exo II to exo III and from motif A to motif C. However, comparisons region by region of each polymerase showed that pol I was similar to ypol II and pol II was similar to ypol III from motif C to the C terminus. In contrast, pol I and pol II were similar to ypol III and ypol II, respectively, in the region from exo III to motif A. These findings suggest that both enzymes from P. occultum play a role in the replication of the genomic DNA of this organism and, furthermore, that the study of DNA replication in this thermophilic archaeon may lead to an understanding of the prototypical mechanism of eukaryotic DNA replication.  相似文献   

10.
The encounter of replication forks with DNA lesions may lead to fork arrest and/or the formation of single-stranded gaps. A major strategy to cope with these replication irregularities is translesion DNA replication (TLS), in which specialized error-prone DNA polymerases bypass the blocking lesions. Recent studies suggest that TLS across a particular DNA lesion may involve as many as four different TLS polymerases, acting in two-polymerase reactions in which insertion by a particular polymerase is followed by extension by another polymerase. Insertion determines the accuracy and mutagenic specificity of the TLS reaction, and is carried out by one of several polymerases such as polη, polκ or polι. In contrast, extension is carried out primarily by polζ. In cells from XPV patients, which are deficient in TLS across cyclobutane pyrimidine dimers (CPD) due to a deficiency in polη, TLS is carried out by at least two backup reactions each involving two polymerases: One reaction involves polκ and polζ, and the other polι and polζ. These mechanisms may also assist polη in normal cells under an excessive amount of UV lesions.  相似文献   

11.
12.
Mammalian DNA polymerase mu (pol mu) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol mu protein increase. pol mu also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of gammaH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol mu is thus part of the cellular response to DNA double-strand breaks. pol mu also associates in cell extracts with the nonhomologous end-joining repair factor Ku and requires both Ku and another end-joining factor, XRCC4-ligase IV, to form a stable complex on DNA in vitro. pol mu in turn facilitates both stable recruitment of XRCC4-ligase IV to Ku-bound DNA and ligase IV-dependent end joining. In contrast, the related mammalian DNA polymerase beta does not form a complex with Ku and XRCC4-ligase IV and is less effective than pol mu in facilitating joining mediated by these factors. Our data thus support an important role for pol mu in the end-joining pathway for repair of double-strand breaks.  相似文献   

13.
Human DNA polymerase nu (pol nu) is one of three A family polymerases conserved in vertebrates. Although its biological functions are unknown, pol nu has been implicated in DNA repair and in translesion DNA synthesis (TLS). Pol nu lacks intrinsic exonucleolytic proofreading activity and discriminates poorly against misinsertion of dNTP opposite template thymine or guanine, implying that it should copy DNA with low base substitution fidelity. To test this prediction and to comprehensively examine pol nu DNA synthesis fidelity as a clue to its function, here we describe human pol nu error rates for all 12 single base-base mismatches and for insertion and deletion errors during synthesis to copy the lacZ alpha-complementation sequence in M13mp2 DNA. Pol nu copies this DNA with average single-base insertion and deletion error rates of 7 x 10(-5) and 17 x 10(-5), respectively. This accuracy is comparable to that of replicative polymerases in the B family, lower than that of its A family homolog, human pol gamma, and much higher than that of Y family TLS polymerases. In contrast, the average single-base substitution error rate of human pol nu is 3.5 x 10(-3), which is inaccurate compared to the replicative polymerases and comparable to Y family polymerases. Interestingly, the vast majority of errors made by pol nu reflect stable misincorporation of dTMP opposite template G, at average rates that are much higher than for homologous A family members. This pol nu error is especially prevalent in sequence contexts wherein the template G is preceded by a C-G or G-C base pair, where error rates can exceed 10%. Amino acid sequence alignments based on the structures of more accurate A family polymerases suggest substantial differences in the O-helix of pol nu that could contribute to this unique error signature.  相似文献   

14.
alpha-OH-PdG, an acrolein-derived deoxyguanosine adduct, inhibits DNA synthesis and miscodes significantly in human cells. To probe the cellular mechanism underlying the error-free and error-prone translesion DNA syntheses, in vitro primer extension experiments using purified DNA polymerases and site-specific alpha-OH-PdG were conducted. The results suggest the involvement of pol eta in the cellular error-prone translesion synthesis. Experiments with xeroderma pigmentosum variant cells, which lack pol eta, confirmed this hypothesis. The in vitro results also suggested the involvement of pol iota and/or REV1 in inserting correct dCMP opposite alpha-OH-PdG during error-free synthesis. However, none of translesion-specialized DNA polymerases catalyzed significant extension from a dC terminus when paired opposite alpha-OH-PdG. Thus, our results indicate the following. (i) Multiple DNA polymerases are involved in the bypass of alpha-OH-PdG in human cells. (ii) The accurate and inaccurate syntheses are catalyzed by different polymerases. (iii) A modification of the current eukaryotic bypass model is necessary to account for the accurate bypass synthesis in human cells.  相似文献   

15.
Mammalian DNA polymerase (pol) β is the founding member of a large group of DNA polymerases now termed the X-family. DNA polymerase β has been kinetically, structurally, and biologically well characterized and can serve as a phylogenetic reference. Accordingly, we have performed a phylogenetic analysis to understand the relationship between pol β and other members of the X-family of DNA polymerases. The bacterial X-family DNA polymerases, Saccharomyces cerevisiae pol IV, and four mammalian X-family polymerases appear to be directly related. These enzymes originated from an ancient common ancestor characterized in two Bacillus species. Understanding distinct functions for each of the X-family polymerases, evolving from a common bacterial ancestor is of significant interest in light of the specialized roles of these enzymes in DNA metabolism.  相似文献   

16.
Replication slippage is a particular type of error caused by DNA polymerases believed to occur both in bacterial and eukaryotic cells. Previous studies have shown that deletion events can occur in Escherichia coli by replication slippage between short duplications and that the main E. coli polymerase, DNA polymerase III holoenzyme is prone to such slippage. In this work, we present evidence that the two other DNA polymerases of E. coli, DNA polymerase I and DNA polymerase II, as well as polymerases of two phages, T4 (T4 pol) and T7 (T7 pol), undergo slippage in vitro, whereas DNA polymerase from another phage, Phi29, does not. Furthermore, we have measured the strand displacement activity of the different polymerases tested for slippage in the absence and in the presence of the E. coli single-stranded DNA-binding protein (SSB), and we show that: (i) polymerases having a strong strand displacement activity cannot slip (DNA polymerase from Phi29); (ii) polymerases devoid of any strand displacement activity slip very efficiently (DNA polymerase II and T4 pol); and (iii) stimulation of the strand displacement activity by E. coli SSB (DNA polymerase I and T7 pol), by phagic SSB (T4 pol), or by a mutation that affects the 3' --> 5' exonuclease domain (DNA polymerase II exo(-) and T7 pol exo(-)) is correlated with the inhibition of slippage. We propose that these observations can be interpreted in terms of a model, for which we have shown that high strand displacement activity of a polymerase diminishes its propensity to slip.  相似文献   

17.
18.
Mitochondrial DNA polymerase gamma (pol gamma) is active in base excision repair of AP (apurinic/apyrimidinic) sites in DNA. Usually AP site repair involves cleavage on the 5' side of the deoxyribose phosphate by AP endonuclease. Previous experiments suggested that DNA pol gamma acts to catalyze the removal of a 5'-deoxyribose phosphate (dRP) group in addition to playing the conventional role of a DNA polymerase. We confirm that DNA pol gamma is an active dRP lyase and show that other members of the family A of DNA polymerases including Escherichia coli DNA pol I also possess this activity. The dRP lyase reaction proceeds by formation of a covalent enzyme-DNA intermediate that is converted to an enzyme-dRP intermediate following elimination of the DNA. Both intermediates can be cross-linked with NaBH(4). For both DNA pol gamma and the Klenow fragment of pol I, the enzyme-dRP intermediate is extremely stable. This limits the overall catalytic rate of the dRP lyase, so that family A DNA polymerases, unlike pol beta, may only be able to act as dRP lyases in repair of AP sites when they occur at low frequency in DNA.  相似文献   

19.
The overexpression of specialized DNA polymerases in cancer   总被引:9,自引:0,他引:9  
Specialized DNA polymerases are required to bypass DNA damage lesions that would otherwise cause replication arrest and cell death. When operating on non-canonical templates, such as undamaged DNA or on non-cognate lesions, these polymerases exhibit considerably reduced fidelity, resulting in the generation of mutations. Ectopic overexpression of these polymerases can also lead to an increased mutation rate and an enhanced capability of DNA repair, suggesting that they could potentially act as oncogenes if they were overexpressed in cancers. Here, we examine expression patterns of DNA polymerases in matched normal and tumor samples from a diverse range of tissues. As well as investigating the specialized polymerases beta, lambda, iota and kappa, we also investigate the expression of the replicative polymerases alpha, delta and epsilon. The data presented provide evidence for the overexpression of specialized polymerases in tumors, with more than 45% of the 68 tumor samples studied demonstrating greater than two-fold enhanced expression of at least one specialized polymerase. Of particular note, DNA polymerase beta (pol beta) was found to be overexpressed at both the mRNA and protein level in approximately one third of all tumor types studied, with overexpression being particularly frequent in uterus, ovary, prostate and stomach samples. Pols lambda, and iota were also found to be overexpressed to a significant extent in a range of tumor types, albeit less frequently than pol beta. In contrast, pol kappa was rarely found to be overexpressed in tumors but was found to be commonly underexpressed in many samples. Downregulation of pol beta expression by siRNA resulted in an increased sensitivity to the chemotherapeutic agent cisplatin, suggesting a role for this polymerase in providing tolerance to cisplatin-induced damage. These observations suggest that specialised DNA polymerases, and particularly pol beta, could be considered both as caretaker genes altered during tumorigenesis, and as potential drug targets to sensitise tumors to chemotherapy.  相似文献   

20.
Rev1 is a translesion synthesis (TLS) DNA polymerase essential for DNA damage tolerance in eukaryotes. In the process of TLS stalled high-fidelity replicative DNA polymerases are temporarily replaced by specialized TLS enzymes that can bypass sites of DNA damage (lesions), thus allowing replication to continue or postreplicational gaps to be filled. Despite its limited catalytic activity, human Rev1 plays a key role in TLS by serving as a scaffold that provides an access of Y-family TLS polymerases polη, ι, and κ to their cognate DNA lesions and facilitates their subsequent exchange to polζ that extends the distorted DNA primer-template. Rev1 interaction with the other major human TLS polymerases, polη, ι, κ, and the regulatory subunit Rev7 of polζ, is mediated by Rev1 C-terminal domain (Rev1-CT). We used NMR spectroscopy to determine the spatial structure of the Rev1-CT domain (residues 1157-1251) and its complex with Rev1 interacting region (RIR) from polη (residues 524-539). The domain forms a four-helix bundle with a well-structured N-terminal β-hairpin docking against helices 1 and 2, creating a binding pocket for the two conserved Phe residues of the RIR motif that upon binding folds into an α-helix. NMR spin-relaxation and NMR relaxation dispersion measurements suggest that free Rev1-CT and Rev1-CT/polη-RIR complex exhibit μs-ms conformational dynamics encompassing the RIR binding site, which might facilitate selection of the molecular configuration optimal for binding. These results offer new insights into the control of TLS in human cells by providing a structural basis for understanding the recognition of the Rev1-CT by Y-family DNA polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号