首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
江浙蝮蛇蛇毒中性磷脂酶A2的结构模拟研究   总被引:1,自引:1,他引:0  
从我国江浙蝮蛇蛇毒纯化出的中性磷脂酶A2(ATX)不仅具有酶催化活性,还具有突触前神经毒性。用图象模拟和能量极小化及分子动力学方法,根据美国西部菱斑响尾蛇(C.atrox)蛇毒PLA2的晶体结构构建了ATX二体和单体模型,它们的基本折叠与C.atroxPLA2是很相似的。能量计算表明,二体的总势能比单体相应能量的两倍低263.6kcal/mol;ATX二体模型中两亚基间的作用与C.atroxPLA  相似文献   

2.
Molecular dynamics simulations of phospholipases A2   总被引:1,自引:0,他引:1  
An extensive molecular dynamics study of phospholipases A2 from pancreatic bovine and Crotalus atrox venom has shown that the well-conserved homologous core of the phospholipases A2, including the so called catalytic network, is very stable during the course of the calculations. The fluctuations which occur are located in segments which have significantly different three-dimensional conformations in the two phospholipases A2 studied, suggesting that a particularly stable core conformation gives rise to a large homologous family of similar three-dimensional structure. The calcium ion, which exhibits a crucial structural role in the monomeric phospholipases A2, appears not to be required to stabilize the C.atrox dimer. Moreover, the behaviour of the dimeric structure during the dynamics raises the question of a possible dissociation of the two subunits into functional monomers.  相似文献   

3.
M A Griep  C S McHenry 《Biochemistry》1988,27(14):5210-5215
The beta subunit of Escherichia coli DNA polymerase III holoenzyme binds Mg2+. Reacting beta with fluoresceinmaleimide (FM) resulted in one label per beta monomer with full retention of activity. Titration of FM-beta with Mg2+ resulted in a saturable 11% fluorescence enhancement. Analysis indicated that there was one noncooperative magnesium binding site per beta monomer with a dissociation constant of 1.7 mM. Saturable fluorescence enhancement was also observed when titration was with Ca2+ or spermidine(3+) but not with the monovalent cations Na+ and K+. The Mg2+-induced fluorescence enhancement was specific for FM-beta and was not observed with FM-glutathione, dimethoxystilbenemaleimide-beta, or pyrenylmaleimide-beta. Gel filtration studies indicated that the beta dimer-monomer dissociation occurred at physiologically significant beta concentrations and that the presence of 10 mM Mg2+ shifted the dimer-monomer equilibrium to favor monomers. Both the gel-filtered dimers and the gel-filtered monomers were active in the replication assay. These and other results suggested that the fluorescence increase which accompanies beta dissociation is due to a relief from homoquenching of FM when the beta dimer dissociates into monomers.  相似文献   

4.
Fluorescence correlation spectroscopy (FCS) was used to characterize the interaction of fluorescence labeled single-stranded DNA (ssDNA) with hexameric RepA DNA-helicase (hRepA) encoded by plasmid RSF1010. The apparent dissociation constants, Kd(app), for the equilibrium binding of 12mer, 30mer, and 45mer ssDNA 5'-labeled with BFL to hRepA dimer in the presence of 0.5 mM ATPgammaS at pH 5.8 and 25 degrees C were determined to be 0.58 +/- 0.12, 0.52 +/- 0.07, and 1.66 +/- 0.32 microM, respectively. Binding curves are compatible with one binding site for ssDNA present on hRepA dimer, with no indication of cooperativity. At pH 7.6 in the presence of ATPgammaS and at pH 5.8 in the absence of ATPgammaS, complex formation between ssDNA and hRepA was too weak for measuring complete binding curves by FCS. Under these conditions, the dissociation constant, Kd(app), is in the range between 10 and 250 microM. The kinetics of complex formation at pH 5.8 are faster than the time resolution (approximately 10-20 s) of FCS experiments under pseudo-first-order conditions, with respect to BFL-ssDNA. Photon correlation spectroscopy (PCS) experiments yielded, within the experimental error range, the same values for the apparent hydrodynamic radii, R(h), of hRepA dimer and its complex with ssDNA as determined by FCS (R(h) = 6.6 +/- 1 nm). hRepA starts to aggregate under acidic conditions (相似文献   

5.
Snake venoms contain a large number of hemostatically active proteins that are structurally related to Ca(2+)-dependent animal lectins. These proteins, called C-type lectin-like proteins (CLPs), are generally found as heterodimers composed of two homologous subunits linked by a disulfide bond. Here, bothrojaracin (BJC), a CLP from Bothrops jararaca venom that is also a thrombin inhibitor, has been used as a model to study the subunit dissociation and unfolding of CLPs from snake venom. Dithiothreitol (DTT) up to 10 mM produces minor effects on the tertiary structure and activity of BJC. On the other hand, chromatographic studies and fluorescence polarization measurements indicate that the interchain disulfide bond is disrupted by DTT, although the dimeric association is maintained. Treatment of BJC with urea produces a progressive red shift in the emission spectra of the tryptophan residues, and circular dichroism measurements show that BJC retains significant secondary structure in the presence of 8 M urea, suggesting only partial unfolding. The effects of urea are fully reversible, as there is complete recovery of BJC activity after removal of the denaturing agent. Addition of DTT to a protein sample previously treated with 8 M urea produces a slightly larger spectral shift than that observed with urea alone. Furthermore, in this condition BJC loses its secondary structure, and its subunits are dissociated. After removal of urea and DTT, BJC is inactive toward thrombin, suggesting the irreversibility of their combined action. Altogether, our data show that (i) BJC is highly resistant to urea or DTT effects, requiring the simultaneous action of both agents to fully denature the protein, and (ii) BJC monomers are tightly associated, and the presence of DTT combined with high urea concentrations is necessary to disrupt them. On the basis of these results we propose the first denaturation model for a CLP from snake venom.  相似文献   

6.
The denaturation of the trp repressor from Escherichia coli has been studied by fluorescence, circular dichroism and proton magnetic resonance spectroscopy. The dependences of the fluorescence emission of the two tryptophan residues on the concentration of urea are not identical. The dependence of the quenching of tryptophan fluorescence by iodide as a function of urea concentration also rules out a two-state transition. The circular dichroism at 222 nm decreases in two phases as urea is added. Normalised curves for different residues observed by 1H NMR also do not coincide, and require the presence of at least one stable intermediate. Analysis of the dependence of the denaturation curves on the concentration of protein indicate that the first transition is a partial unfolding of the dimeric repressor, resulting in a loss of about 25% of the helical content. The second transition is the dissociation and unfolding of the partially unfolded dimer. At high concentrations of protein (500 microM) about 73% of the repressor exists as the intermediate in 4 M urea. The apparent dissociation constant is about 10(-4) M; the subunits are probably strongly stabilised by the subunit interaction. The native repressor is stable up to at least 70 degrees C, whereas the intermediate formed at 4 M urea can be denatured reversibly by heating (melting temperature approximately 60 degrees C, delta H approximately 230 kJ/mol).  相似文献   

7.
The monomer-dimer equilibria of the dimeric phospholipases A2 from Crotalus atrox and Agkistrodon piscivorus piscivorus venoms were examined chromatographically as a function of pH and in the presence versus absence of the essential cofactor, calcium ion. At neutral pH without calcium, the subunits of both enzymes reequilibrated sufficiently slowly that dimer and monomer were separated by size exclusion chromatography. At pH 4.2 and lower, the dimers underwent rapid dissociation and reassociation, eluting as single broad peaks whose position as a function of applied protein concentration could be analyzed to determine association constants using an algorithm that estimates these values based on elution positions. Lowering the pH from 7.0 to 4.2 increased the self-association constant of the C. atrox enzyme by 1 order of magnitude and that of the A. p. piscivorus dimer by a factor of 3. Calcium ion, an essential cofactor of phospholipase A2, converted the kinetic behavior of the dimers at neutral pH from slow to virtually instantaneous on the time scale of the chromatography runs, 40 min. Calcium ion also altered the thermodynamic stability of the enzymes; the association constant of A. p. piscivorus phospholipase A2 in neutral pH buffer was reduced by approximately 2 orders of magnitude, whereas that of C. atrox was increased by a factor of 6. The structural basis for the disparate effects of calcium ion on these two acidic, dimeric venom phospholipases A2 is uncertain. This study illustrates the importance of calcium ion and pH on the solution behavior of the dimeric members of this class of enzymes.  相似文献   

8.
Cold-adaptation of enzymes involves improvements in catalytic efficiency. This paper describes studies on the conformational stability of a cold-active alkaline phosphatase (AP) from Atlantic cod, with the aim of understanding more clearly its structural stability in terms of subunit dissociation and unfolding of monomers. AP is a homodimeric enzyme that is only active in the dimeric state. Tryptophan fluorescence, size-exclusion chromatography and enzyme activity were used to monitor alterations in conformational state induced by guanidinium chloride or urea. In cod AP, a clear distinction could be made between dissociation of dimers into monomers and subsequent unfolding of monomers (fits a three-state model). In contrast, dimer dissociation of calf AP coincided with the monophasic unfolding curve observed by tryptophan fluorescence (fits a two-state model). The DeltaG for dimer dissociation of cod AP was 8.3 kcal.mol-1, and the monomer stabilization free energy was 2.2 kcal.mol-1, giving a total of 12.7 kcal.mol-1, whereas the total free energy of calf intestinal AP was 17.3 kcal.mol-1. Thus, dimer formation provided a major contribution to the overall stability of the cod enzyme. Phosphate, the reaction product, had the effect of promoting dimer dissociation and stabilizing the monomers. Cod AP has reduced affinity for inorganic phosphate, the release of which is the rate-limiting step of the reaction mechanism. More flexible links at the interface between the dimer subunits may ease structural rearrangements that facilitate more rapid release of phosphate, and thus catalytic turnover.  相似文献   

9.
The reversible inactivation and dissociation of the allosteric phosphofructokinase from Escherichia coli has been studied in relatively mild conditions, i.e., in the presence of the chaotropic agent KSCN. At moderate KSCN concentration, the loss of enzymatic activity involves two separated phases: first, a rapid dissociation of part of the tetramer into dimers, second, a slower displacement of the dimer-tetramer equilibrium upon further dissociation of the dimer into monomers. These two reactions can no longer be distinguished above 0.3 M KSCN since complete inactivation occurs in a single reaction. Different changes are observed for the fluorescence and the activity of the enzyme in KSCN: the fluorescence is not affected by the dissociation into dimers which is responsible for inactivation. The decrease in fluorescence reflects the change in environment of the unique tryptophan residue, Trp 311, during the dimer to monomer dissociation. This residue belongs to the interface containing the regulatory site, and its native fluorescence indicates that this interface is still present in the dimer. The substrate fructose 6-phosphate protects phosphofructokinase from inactivation by binding to the tetramer and prevents its dissociation into dimers. The presence of phosphoenolpyruvate prevents the slow dissociation of the dimer into monomers, which shows the ability of the dimer to bind the inhibitor. Two successive processes can be observed during reassociation of the protein upon KSCN dilution. First, a fast reaction (k1 = 2 x 10(5) M-1.s-1) is accompanied by a fluorescence increase and results in the formation of the dimeric species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Bothropstoxin I (BthTX-I) from the venom of Bothrops jararacussuis a myotoxic phospholipase A2 (PLA2) homologue which, although catalytically inactive due to an Asp49→Lys substitution, disrupts the integrity of lipid membranes by a Ca2+-independent mechanism. The crystal structures of two dimeric forms of BthTX-I which diffract X-rays to resolutions of 3.1 and 2.1 Å have been determined. The monomers in both structures are related by an almost perfect twofold axis of rotation and the dimer interfaces are defined by contacts between the N-terminal α-helical regions and the tips of the β-wings of partner monomers. Significant differences in the relative orientation of the monomers in the two crystal forms results in “open” and “closed” dimer conformations. Spectroscopic investigations of BthTX-I in solution have correlated these conformational differences with changes in the intrinsic fluorescence emission of the single tryptophan residues located at the dimer interface. The possible relevance of this structural transition in the Ca2+-independent membrane damaging activity is discussed. Proteins 30:442–454, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
The pathway for the in vitro equilibrium unfolding of the tubulin heterodimer by guanidinium chloride (GdmCl) has been studied using several spectroscopic techniques, specifically circular dichroism (CD), two-photon Fluorescence Correlation Spectroscopy (FCS), and time-resolved fluorescence, including lifetime and dynamic polarization. The results show that tubulin unfolding is characterized by distinct processes that occur in different GdmCl concentration ranges. From 0 to 0.5 M GdmCl, a slight alteration of the tubulin heterodimer occurs, as evidenced by a small, but reproducible increase in the rotational correlation time of the protein and a sharp decrease in the secondary structure monitored by CD. In the range 0.5-1.5 M GdmCl, significant decreases in the steady-state anisotropy and average lifetime of the intrinsic tryptophan fluorescence occur, as well as a decrease in the rotational correlation time, from 48 to 26 nsec. In the same GdmCl range, the number of protein molecules (labeled with Alexa 488), as determined by two-photon FCS measurements, increases by a factor of two, indicating dissociation of the tubulin dimer into monomers. From 1.5 to 4 M GdmCl, these monomers unfold, as evidenced by the continual decrease in the tryptophan steady-state anisotropy, average lifetime, and rotational correlation time, concomitant with secondary structural changes. These results help to elucidate the unfolding pathway of the tubulin heterodimer and demonstrate the value of FCS measurements in studies on oligomeric protein systems.  相似文献   

12.
Novel phospholipids that function as mechanism-based inhibitors for phospholipase A2 (PLA2) are described. PLA2-catalyzed hydrolysis of the sn-2 ester of these suicide-inhibitory bifunctionally linked substrates (SIBLINKS) followed by a cyclization reaction generates a cyclic anhydride at the active site of the enzyme which leads to inhibition. Structure/activity relationships for the SIBLINKS substituents in the sn-1 and sn-2 position are delineated. Time courses and efficiency of SIBLINKS inhibition are reported and compared for extracellular PLA2s obtained from Naja naja naja, porcine pancreas, bee venom, Crotalus atrox and Crotalus adamanteus. SIBLINKS-inhibited PLA2s cannot process either monomeric or micellar substrates consistent with inhibition at the catalytic site. Some SIBLINKS efficiently inactivate 1 mol of N. naja naja and C. adamanteus PLA2/6-10 mol of SIBLINKS hydrolyzed. Inhibition of N. naja naja PLA2 can be reversed by hydroxylamine, suggesting that a tyrosine residue is acylated.  相似文献   

13.
To achieve our aim of understanding the interactions between direct current and enzymes in solution, we exposed reconstituted Crotalus atrox venom to direct electric current by immersing two platinum thread electrodes connected to a voltage generator (between 0 and 8 V) into a reaction mixture for a few seconds. Then, we assayed the residual activity of phospholipases A(2) (PLA(2)),metalloproteinases, and phosphodiesterases, abundant in crotaline snake venoms and relevant in the pathophysiology of envenomation, characterized by hemorrhage, pain, and tissue damage. C. atrox venom phospholipase A(2) and metalloproteinases were consistently and irreversibly inactivated by direct current (between 0 and 0.7 mA) exposure. In contrast, C. atrox venom phosphodiesterases were not affected. Total protein content and temperature of the sample remained the same. Secretory pancreatic phospholipase A(2), homologue to snake venom phospholipases A(2), was also inactivated by direct current treatment. In order to understand the structural reasoning behind PLA(2) inactivation, circular dichroism measurements were conducted on homogeneous commercial pancreatic phospholipase A(2), and it was found that the enzyme undergoes structural alterations upon direct current exposure.  相似文献   

14.
Garai K  Frieden C 《Biochemistry》2010,49(44):9533-9541
The apolipoprotein E family consists of three major protein isoforms: apolipoprotein E4 (ApoE4), ApoE3, and ApoE2. The isoforms, which contain 299 residues, differ only by single-amino acid changes, but of the three, only ApoE4 is a risk factor for Alzheimer’s disease. At micromolar concentrations, lipid-free ApoE exists predominantly as tetramers. In more dilute solutions, lower-molecular mass species predominate. Using fluorescence correlation spectroscopy (FCS), intermolecular fluorescence resonance energy transfer (FRET), and sedimentation methods, we found that the association?dissociation reaction of ApoE can be modeled with a monomer?dimer?tetramer process. Equilibrium constants have been determined from the sedimentation data, while the individual rate constants for association and dissociation were determined by measurement of the kinetics of dissociation of ApoE and are in agreement with the equilibrium constants. Dissociation kinetics as measured by intermolecular FRET show two phases reflecting the dissociation of tetramer to dimer and of dimer to monomer, with dissociation from tetramer to dimer being more rapid than the dissociation from dimer to monomer. The rate constants differ for the different ApoE isoforms, showing that the association?dissociation process is isoform specific. Strikingly, the association rate constants are almost 2 orders of magnitude slower than expected for a diffusion-controlled process. Dissociation kinetics were also monitored by tryptophan fluorescence in the presence of acrylamide and the data found to be consistent with the monomer?dimer?tetramer model. The approach combining multiple methods establishes the reaction scheme of ApoE self-association.  相似文献   

15.
A great mystery in the mechanism of phospholipase A2 (PLA2) and many other lipolytic enzymes is the "interfacial activation" induced by micellar but not monomeric substrates. Equally mysterious is the lack of interfacial activation in bee venom PLA2, as opposed to PLA2s from pancreas and other sources. We have probed these problems using the conformationally restricted short-chain cyclopentano-analogues of diacylphosphatidylcholine (Cp-DCnPC, all-trans isomer). In the reaction catalyzed by bovine pancreatic PLA2, Cp-DC8PC behaved differently from DC8PC in that its monomers and micelles showed comparable activities (but lower than the activity of DC8PC). This result suggests that the activity of PLA2 can be regulated by substrate conformation and supports the "substrate conformation model" (Wells, M. A. (1974) Biochemistry 13, 2248-2257), but raises a question as to whether Cp-DC8PC mimics monomers or micelles of DC8PC. Conformational analysis by 1H NMR revealed that monomeric Cp-DC8PC was conformationally restricted near the carbonyl region, a property characteristic of micelles. Thus, monomeric CP-DC8PC can be considered as a conformational analogue of micelles, but the important structural feature lies in the CH2COO region instead of the glycerol backbone. CP-DC8PC was then used to test a previous proposal that the bee venom PLA2 hydrolyzes monomers but not micelles (which would predict little or no activity for Cp-DC8PC since its conformation is micelle-like whether below or above its critical micelle concentration). The results showed that Cp-DC8PC is a relatively good substrate for the bee venom PLA2 in comparison with the pancreatic PLA2. This and other evidence together suggest that the bee venom PLA2 is not sensitive to the conformation of monomeric and micellar substrates and hydrolyzes both monomers and micelles. The results in both PLA2s demonstrate the usefulness of cyclopentano-phospholipids in probing the mechanism of phospholipases and the roles of substrate conformation in the catalysis of PLA2.  相似文献   

16.
Human recombinant glycine N-methyltransferase (GNMT) unfolding by urea was studied by enzyme activity, size-exclusion chromatography, fluorescence spectroscopy, and circular dichroism. Urea unfolding of GNMT is a two-step process. The first transition is a reversible dissociation of the GNMT tetramer to compact monomers in 1.0-3.5M urea with enzyme inactivation. The compact monomers were characterized by Stokes radius (R(s)) of 40.7A equal to that of globular proteins with the same molecular mass as GNMT monomers, absence of exposure of tryptophan residues into solvent, and presence of about 50% of secondary structure of native protein. The second step of GNMT unfolding is a reversible transition of monomers from compact to a fully unfolded state with R(s) of 50A, exposed tryptophan residues, and disrupted secondary structure in 8M urea.  相似文献   

17.
J L Silva  E W Miles  G Weber 《Biochemistry》1986,25(19):5780-5786
Micromolar solutions of tryptophan synthase beta 2 dimer dissociate into monomers in the pressure range of 800-1600 bars as shown by studies of the spectral shift of the intrinsic fluorescence and of the fluorescence polarization of dansyl conjugates. At 25 degrees C the standard change in volume on dissociation (dV0) of the holoprotein was -162 mL mol-1, and the dissociation constant at 1 bar was K0 = 3.7 10(-10) M. Pyridoxal-reduced holoprotein and apoprotein had, within 10%, the same dV0, but K0 was decreased in the reduced protein (6 X 10(-11) M) and increased in the apoprotein (3.6 X 10(-9) M). At 4 degrees C the free energy of association of the holoprotein was reduced by 1.4 kcal mol-1, but dV0 was unchanged. In all the protein forms the decompression curves differed from the respective compression curves, indicating the loss of some free energy of association following separation of the monomers. This hysteretic behavior was largest in the apoprotein and amounted to a loss of 2.6 kcal mol-1 in the free energy of association. When the pressure was rapidly raised to 2.2 kbars, half-dissociation of the reduced pyridoxal beta 2 dimer took approximately 12 min. Upon return to atmospheric pressure reassociation was complete in 2-3 min and half of the enzyme activity was regained in 10 min; pyridoxal fluorescence recovered more slowly with a biphasic course. The independent return of these properties and the hysteretic behavior indicate that subunit separation is followed by a conformational drift like that observed in lactate dehydrogenase dissociated by either pressure or temperature or in enolase dissociated by dilution.  相似文献   

18.
T Fernando  C A Royer 《Biochemistry》1992,31(29):6683-6691
The unfolding properties of the trp repressor of Escherichia coli have been studied using a number of different time-resolved and steady-state fluorescence approaches. Denaturation by urea was monitored by the average fluorescence emission energy of the intrinsic tryptophan residues of the repressor. These data were consistent with a two-state transition from dimer to unfolded monomer with a free energy of unfolding of 19.2 kcal/mol. The frequency response profiles of the fluorescence emission brought to light subtle urea-induced modifications of the intrinsic tryptophan decay parameters both preceding and following the main unfolding transition. The increase of lifetime induced by urea required higher concentrations of urea than the increase in the total intensity described by Gittelman and Matthews [(1990) Biochemistry 29, 7011]. This indicates that the intensity increase has both dynamic and static origins. To assess the effect of tryptophan binding upon repressor stability, and to determine whether repressor oligomerization would be detectable in an unfolding experiment, we examined denaturation profiles of repressor labeled with the long-lived fluorescence probe 5-(dimethylamino)naphthalene-1-sulfonyl (DNS), by monitoring the average rotational correlation time of the probe. These experiments revealed a protein concentration dependent transition at low urea concentrations. This transition was promoted by tryptophan binding. We ascribe this transition to urea-induced dissociation of repressor tetramers. The main unfolding transition of the dimer to unfolded monomer was also observable using this technique, and the free energies associated with this transition were 18.3 kcal/mol in the absence of tryptophan and 24.1 kcal/mol in its presence, demonstrating that co-repressor binding stabilizes the repressor dimer against denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In order to assess the adaptability and/or applicability of the restrained molecular dynamics (RMD) simulation for building a possible tertiary structure of a protein from the X-ray crystal structure of a family reference protein, the tertiary structure prediction of Crotalus atrox venom phospholipase A2 (PLA2) was attempted based on the X-ray crystal structure of bovine pancreatic PLA2. For the formation of secondary and tertiary structures from the fully extended starting structure, the RMD simulation with interatomic distance restraints and torsion angle restraints, which were derived from homologous amino acid sequence regions in the reference protein, was carried out until the molecular system was fully equilibrated. The predicted tertiary structure of C. atrox venom PLA2 was compared with its X-ray crystal structure, and furthermore the utility of this method was discussed by reference to the similar tertiary structure prediction of beta-trypsin from the X-ray crystal structure of an elastase.  相似文献   

20.
The pH dependence of kinetic parameters for the hydrolysis of mixed micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (diC16PC) with Triton X-100, catalyzed by the intact and the N-terminal alpha-NH2-modified phospholipases A2 (PLA2s) of Agkistrodon halys blomhoffii, was studied at 25 degrees C and ionic strength 0.1 in the presence of saturating amounts of Ca2+. The pH dependence of the kinetic parameters for the hydrolysis of monodispersed diC6PC, catalyzed by the modified enzyme, was also studied under the same conditions, and the data were compared with the previous results for the intact enzyme [Teshima, K. et al. (1986) J. Biochem. 100, 1655-1662]. The pK values of the catalytic group, His 48, and Tyr 52 were found to shift from 5.55 to 7.00 and from 10.50 to 11.50, respectively, on binding of the micellar substrates to the enzyme. On the other hand, no participation of these ionizable groups was observed for the binding of the monodispersed substrate. On the basis of the present finding and the X-ray crystallographic studies on bovine pancreatic PLA2 [Dijkstra, B.W. et. al. (1981) J. Mol. Biol. 147, 97-123] and on a PLA2 of Crotalus atrox venom [Brunie, S. et al. (1985) J. Biol. Chem. 260, 9742-9749], the hydrogen-bonding of Tyr 73, which is involved in the lipid-water interface recognition site, to His 48 and Tyr 52 in the active center was strongly suggested to be important for the hydrolysis of micellar substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号