首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the over 200 identified mammalian microRNAs (miRNAs), only a few have known biological activity. To gain a better understanding of the role that miRNAs play in specific cellular pathways, we utilized antisense molecules to inhibit miRNA activity. We used miRNA inhibitors targeting miR-23, 21, 15a, 16 and 19a to test efficacy of antisense molecules in reducing miRNA activity on reporter genes bearing miRNA-binding sites. The miRNA inhibitors de-repressed reporter gene activity when a miRNA-binding site was cloned into its 3′-untranslated region. We employed a library of miRNA inhibitors to screen for miRNA involved in cell growth and apoptosis. In HeLa cells, we found that inhibition of miR-95, 124, 125, 133, 134, 144, 150, 152, 187, 190, 191, 192, 193, 204, 211, 218, 220, 296 and 299 caused a decrease in cell growth and that inhibition of miR-21 and miR-24 had a profound increase in cell growth. On the other hand, inhibition of miR-7, 19a, 23, 24, 134, 140, 150, 192 and 193 down-regulated cell growth, and miR-107, 132, 155, 181, 191, 194, 203, 215 and 301 increased cell growth in lung carcinoma cells, A549. We also identified miRNA that when inhibited increased the level of apoptosis (miR-1d, 7, 148, 204, 210, 216 and 296) and one miRNA that decreased apoptosis (miR-214) in HeLa cells. From these screens, we conclude that miRNA-mediated regulation has a complexity of cellular outcomes and that miRNAs can be mediators of regulation of cell growth and apoptosis pathways.  相似文献   

2.
MiR-21 is one of the most up-regulated miRNAs in multiple allergic diseases associated with eosinophilia and has been shown to positively correlate with eosinophil levels. Herein, we show that miR-21 is up-regulated during IL-5-driven eosinophil differentiation from progenitor cells in vitro. Targeted ablation of miR-21 leads to reduced eosinophil progenitor cell growth. Furthermore, miR-21−/− eosinophil progenitor cells have increased apoptosis as indicated by increased levels of annexin V positivity compared to miR-21+/+ eosinophil progenitor cells. Indeed, miR-21−/− mice have reduced blood eosinophil levels in vivo and reduced eosinophil colony forming unit capacity in the bone marrow. Using gene expression microarray analysis, we identified dysregulation of genes involved in cell proliferation (e,g, Ms4a3, Grb7), cell cycle and immune response as the most significant pathways affected by miR-21 in eosinophil progenitors. These results demonstrate that miR-21 can regulate the development of eosinophils by influencing eosinophil progenitor cell growth. Our findings have identified one of the first miRNAs with a role in regulating eosinophil development.  相似文献   

3.
Lung cancer is an significant cause of death worldwide, and non–small-cell lung cancer (NSCLC) is the most common type of lung cancer. MicroRNAs (miRNAs) have been identified to play key roles in NSCLC development. Recently, it has been reported that miR-605-5p is a cancer-related miRNA in several types of tumors. In this study, we study the role of miR-605-5p in NSCLC cells. We find that miR-605-5p is upregulated in NSCLC cells. Overexpression of miR-605-5p significantly promotes lung cancer invasion and migration in H460 and H1299 cells. Besides this, miR-605-5p also promotes lung cancer cell carcinoma proliferation and metastasis in vivo. However, downregulation of miR-605-5p inhibits cell invasion and migration by inhibiting lung cancer cell carcinoma proliferation and metastasis. In addition, the luciferase report assay identifies 3′-untranslated region tumor necrosis factor α-induced protein 3 (TNFAIP3) as a target of miR-605-5p. Silencing of TNFAIP3 promotes invasion and proliferation in lung cancer. In addition, the knockdown of TNFAIP3 restores the significant decrease in invasion and proliferation in miR-605-5p-inhibitor–transfected lung cancer cells. In conclusion, miR-605-5p promotes invasion and proliferation by targeting TNFAIP3 in NSCLC, and may provide possible biomarkers for NSCLC therapy.  相似文献   

4.
Lung cancer is one of the deadliest cancers worldwide. To increase the survival rate of lung cancer, it is necessary to explore specific prognosis markers. More and more evidence finds that noncoding RNA is closely associated with the survival of lung cancer, and cancer stem cells (CSCs) also play a significant role in the progress of lung cancer. The objective of this study is to find CSLCs genes that affect the prognosis of lung cancer. The differential expression of long noncoding RNAs (lncRNAs), microRNAs (miRNAs), messenger RNAs (mRNAs) in the Cancer Genome Atlas (TCGA) database and differential expression data from microarray of CD326+ and CD326 A549 cell are intersected to identify stable and consistent expression genes (2 lncRNAs, 15 miRNAs, and 134 mRNAs). The intersection of lncRNAs and miRNAs is analyzed by univariate and multivariate Cox regression to obtained prognostic genes. Two miRNAs (miR-30b-5p and miR-29c-3p) are significantly correlated with the overall survival rate. Then using these two miRNAs to construct a risk score model as a prognosis signature of lung cancer. Subsequently, we analyzed the association between two miRNAs and clinical information of lung cancer patients, of which T stage, Neoplasm cancer and risk score (P < .05) can be used as independent prognostic indicators of lung cancer. Finally, target genes of 2 miRNAs and 134 mRNAs were annotated with Gene Ontology and analyzed with Kyoto Encyclopedia of Genes and Genomes pathway, and verified with the GEO database. In summary, this study illustrates the role of miRNAs in the promotion of lung cancer by CSCs, which is important to find molecular biomarkers of lung cancer.  相似文献   

5.
Three-dimensional organotypic culture using reconstituted basement membrane matrix (rBM 3-D) is an invaluable tool to characterize morphogenesis of epithelial cells and to elucidate the tumor-modulating actions of extracellular matrix. microRNAs (miRNA) are a novel class of tumor modulating genes. A substantial amount of investigation of miRNAs in cancer is carried out using monolayer 2-D culture on plastic substratum, which lacks a consideration of the matrix-mediated regulation of miRNAs. In the current study we compared the expression of miRNAs in rBM 3-D and 2-D cultures of two lung adenocarcinoma cell lines. Our findings revealed a profound difference in miRNA profiles between 2-D and rBM 3-D cultures of lung adenocarcinoma cells. The rBM 3-D culture-specific miRNA profile was highlighted with higher expression of the tumor suppressive miRNAs (i.e., miR-200 family) and lower expression of the oncogenic miRNAs (i.e., miR-17–92 cluster and miR-21) than that of 2-D culture. Moreover, the expression pattern of miR-17, miR-21, and miR-200a in rBM 3-D culture correlated with the expression of their targets and acinar morphogenesis, a differentiation behavior of lung epithelial cells in rBM 3-D culture. Over-expression of miR-21 suppressed its target PTEN and disrupted acinar morphogenesis. In summary, we provide the first miRNA profile of lung adenocarcinoma cells in rBM 3-D culture with respect to acinar morphogenesis. These results indicate that rBM 3-D culture is essential to a comprehensive understanding of the miRNA biology in lung epithelial cells pertinent to lung adenocarcinoma.  相似文献   

6.
4-Hydroxynonenal (HNE) is one of several lipid oxidation products that may have an impact on human pathophysiology. It is an important second messenger involved in the regulation of various cellular processes and exhibits antiproliferative and differentiative properties in various tumor cell lines. The mechanisms by which HNE affects cell growth and differentiation are only partially clarified. Because microRNAs (miRNAs) have the ability to regulate several cellular processes, we hypothesized that HNE, in addition to other mechanisms, could affect miRNA expression. Here, we present the results of a genome-wide miRNA expression profiling of HNE-treated HL-60 leukemic cells. Among 470 human miRNAs, 10 were found to be differentially expressed between control and HNE-treated cells (at p < 0.05). Six miRNAs were down-regulated (miR-181a*, miR-199b, miR-202, miR-378, miR-454-3p, miR-575) and 4 were up-regulated (miR-125a, miR-339, miR-663, miR-660). Three of these regulated miRNAs (miR-202, miR-339, miR-378) were further assayed and validated by quantitative real-time RT-PCR. Moreover, consistent with the down-regulation of miR-378, HNE also induced the expression of the SUFU protein, a tumor suppressor recently identified as a target of miR-378. The finding that HNE could regulate the expression of miRNAs and their targets opens new perspectives on the understanding of HNE-controlled pathways. A functional analysis of 191 putative gene targets of miRNAs modulated by HNE is discussed.  相似文献   

7.
Prostaglandins are a class of molecules that mediate cellular inflammatory responses and control cell growth. The oxidative conversion of arachidonic acid to prostaglandin H2 is carried out by two isozymes of cyclooxygenase, COX-1 and COX-2. COX-1 is constitutively expressed, while COX-2 can be transiently induced by external stimuli, such as pro-inflammatory cytokines. Interestingly, COX-2 is overexpressed in numerous cancers, including lung cancer. MicroRNAs (miRNAs) are small RNA molecules that function to regulate gene expression. Previous studies have implicated an important role for miRNAs in human cancer. We demonstrate here that miR-146a expression levels are significantly lower in lung cancer cells as compared with normal lung cells. Conversely, lung cancer cells have higher levels of COX-2 protein and mRNA expression. Introduction of miR-146a can specifically ablate COX-2 protein and the biological activity of COX-2 as measured by prostaglandin production. The regulation of COX-2 by miR-146a is mediated through a single miRNA-binding site present in the 3′ UTR. Therefore, we propose that decreased miR-146a expression contributes to the up-regulation and overexpression of COX-2 in lung cancer cells. Since potential miRNA-mediated regulation is a functional consequence of alternative polyadenylation site choice, understanding the molecular mechanisms that regulate COX-2 mRNA alternative polyadenylation and miRNA targeting will give us key insights into how COX-2 expression is involved in the development of a metastatic condition.  相似文献   

8.
9.
10.
microRNAs modulate iPS cell generation   总被引:1,自引:0,他引:1  
Yang CS  Li Z  Rana TM 《RNA (New York, N.Y.)》2011,17(8):1451-1460
  相似文献   

11.
MicroRNAs (miRNAs) play critical regulatory roles in the physiological and pathological processes. The high stability of miRNAs in human serum represents attractive novel diagnostic biomarkers of clinical conditions. Several studies have shown that aberrant expression of miRNAs in human cancer including lung cancer, but little is known about their effects on some infectious lung diseases such as pulmonary tuberculosis (TB) and pneumonia. In this study, we investigated miRNA expression pattern in serum of Egyptian patients with lung cancer, TB, and pneumonia compared with matched healthy controls. Using microarray-based expression profiling followed by real-time quantitative polymerase chain reaction validation, we compared the levels of a series of circulating miRNAs (miR-21, miR-155, miR-182, and miR-197) in serum from patients with lung cancer (n = 65), pulmonary tuberculosis (n = 29), pneumonia (n = 29), and transudate (n = 16) compared with matched healthy controls (n = 37). MiRNA SNORD68 was the housekeeping endogenous control. We found that the serum levels of miR-21, miR-155, and miR-197 were significantly elevated in the patients with lung cancer and pneumonia whereas miR-182 and miR-197 levels were increased only in patients with lung cancer and TB, respectively, compared with controls. Receiver operating characteristic analysis revealed that miR-182, miR-155, and miR-197 have superior diagnostic potential in discriminating patients with lung cancer, pneumonia, and TB, respectively, from controls. Our results conclude that the differential expression of the four studied miRNAs can be potential non-invasive biomarkers for patients with lung cancer, TB and pneumonia.  相似文献   

12.
13.
MicroRNAs (miRNAs) are evolutionarily conserved non-coding RNAs of ∼22 nucleotides that regulate gene expression at the level of translation and play vital roles in hippocampal neuron development, function and plasticity. Here, we performed a systematic and in-depth analysis of miRNA expression profiles in cultured hippocampal neurons during development and after induction of neuronal activity. MiRNA profiling of primary hippocampal cultures was carried out using locked nucleic-acid-based miRNA arrays. The expression of 264 different miRNAs was tested in young neurons, at various developmental stages (stage 2–4) and in mature fully differentiated neurons (stage 5) following the induction of neuronal activity using chemical stimulation protocols. We identified 210 miRNAs in mature hippocampal neurons; the expression of most neuronal miRNAs is low at early stages of development and steadily increases during neuronal differentiation. We found a specific subset of 14 miRNAs with reduced expression at stage 3 and showed that sustained expression of these miRNAs stimulates axonal outgrowth. Expression profiling following induction of neuronal activity demonstrates that 51 miRNAs, including miR-134, miR-146, miR-181, miR-185, miR-191 and miR-200a show altered patterns of expression after NMDA receptor-dependent plasticity, and 31 miRNAs, including miR-107, miR-134, miR-470 and miR-546 were upregulated by homeostatic plasticity protocols. Our results indicate that specific miRNA expression profiles correlate with changes in neuronal development and neuronal activity. Identification and characterization of miRNA targets may further elucidate translational control mechanisms involved in hippocampal development, differentiation and activity-depended processes.  相似文献   

14.
Exosomes secreted by living cancer cells can regulate metastasis. Exosomal miRNAs can reflect pathological conditions of the original cancer cells. Therefore, we aim to identify exosomal miRNAs as circulating biomarkers for haematogenous metastasis of gastric cancer. Pre-treatment serum samples of eighty-nine patients with stage II/III gastric cancer were collected. Thirty-four of them developed haematogenous metastasis after surgery and the other fifty-five did not. Extraction of exosomes was validated by western blot, transmission electron microscopy and nanoparticle tracking analysis. MiRNA qPCR array was performed in three matched pairs of samples. Internal control was selected from PCR array and validated in the remaining samples. Expressions of exosomal miRNAs were evaluated in the remaining samples by RT-qPCR, as well as in gastric cancer tissue samples and cell culture medium. Expression levels of exosomal miRNAs were analysed with clinical characteristics. The results indicated thirteen up-regulated and six down-regulated miRNAs were found after normalization. MiR-379-5p and miR-410-3p were significantly up-regulated in metastatic patients (P < .01). Higher expression of exosomal miR-379-5p or miR-410-3p showed shorter progression-free survival of the patients (P < .05). It was also found that miR-379-5p and miR-410-3p were down-regulated in gastric cancer tissue samples, while they were significantly up-regulated in gastric cancer cell culture medium compared with cancer cells. In conclusion, exosomal miRNAs are promising circulating biomarkers for prediction of development of haematogenous metastasis after surgery for stage II/III gastric cancer.  相似文献   

15.
在变应性鼻炎(allergic rhinitis,AR)发病的免疫细胞分化及免疫应答过程中,micro RNA(miRNA)发挥着非常重要的调控作用。本文旨在对AR中miRNA研究进行回顾,以期为AR的有效治疗提供新的视角。首先,变应性鼻炎患者鼻粘膜中miR-7和miRPlus-E1194等差异表达。其次,在T辅助细胞发育、分化与活化过程中,miR-181a、miR-155、miR-21、miR-1、miR-31、miR-223、miR-139-3p、miR-126、Let-7家族成员会发生显著上调或下降,而且某些miRNA的相关作用靶点也得到验证。再次,嗜酸粒细胞定向分化祖细胞向成熟嗜酸粒细胞的分化过程中,miR-21和miR-223都有所上调。最后,在肥大细胞激活和脱颗粒过程中,miR-221和miR-222以及其他miRNA显著上调。以上miRNA参与了T辅助细胞分化与活化、嗜酸粒细胞发育、肥大细胞脱颗粒等AR病理进程的各个环节,而且,miRNA还会参与前期的抗原提呈等环节。可见miRNA对AR调控呈现出复杂性和多重性。  相似文献   

16.
We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) down-regulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the α subunit of CK2 (CK2α) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the CK2α 3′-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for CK2α downregulation. The four miRNAs increased senescence-associated β-galactosidase (SA-β-gal) staining, p53 and p21Cip1/WAF1 expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. CK2α over-expression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through CK2α downregulation-dependent ROS generation.  相似文献   

17.
MiRNAs are known to regulate gene expression and in the context of cancer have been shown to regulate metastasis, cell proliferation and cell death. In this report we describe potential miRNA regulatory roles with respect to induction of cell death by pharmacologic dose of Epidermal Growth Factor (EGF). Our previous work suggested that multiple pathways are involved in the induction of apoptosis, including interferon induced genes, cytokines, cytoskeleton and cell adhesion and TP53 regulated genes. Using miRNA time course expression profiling of EGF treated A431 cells and coupling this to our previous gene expression and proteomic data, we have been able to implicate a number of additional miRNAs in the regulation of apoptosis. Specifically we have linked miR-134, miR-145, miR-146b-5p, miR-432 and miR-494 to the regulation of both apoptotic and anti-apoptotic genes expressed as a function of EGF treatment. Whilst additional miRNAs were differentially expressed, these had the largest number of apoptotic and anti-apoptotic targets. We found 5 miRNAs previously implicated in the regulation of apoptosis and our results indicate that an additional 20 miRNAs are likely to be involved based on their correlated expression with targets. Certain targets were linked to multiple miRNAs, including PEG10, BTG1, ID1, IL32 and NCF2. Some miRNAs that target the interferon pathway were found to be down regulated, consistent with a novel layer of regulation of interferon pathway components downstream of JAK/STAT. We have significantly expanded the repertoire of miRNAs that may regulate apoptosis in cancer cells as a result of this work.  相似文献   

18.
microRNAs have recently emerged as master regulators of gene expression during development and cell differentiation. Although profound changes in gene expression also occur during antigen-induced T cell differentiation, the role of miRNAs in the process is not known. We compared the miRNA expression profiles between antigen-specific na?ve, effector and memory CD8+ T cells using 3 different methods--small RNA cloning, miRNA microarray analysis and real-time PCR. Although many miRNAs were expressed in all the T cell subsets, the frequency of 7 miRNAs (miR-16, miR-21, miR-142-3p, miR-142-5p, miR-150, miR-15b and let-7f) alone accounted for approximately 60% of all miRNAs, and their expression was several fold higher than the other expressed miRNAs. Global downregulation of miRNAs (including 6/7 dominantly expressed miRNAs) was observed in effector T cells compared to na?ve cells and the miRNA expression levels tended to come back up in memory T cells. However, a few miRNAs, notably miR-21 were higher in effector and memory T cells compared to na?ve T cells. These results suggest that concomitant with profound changes in gene expression, miRNA profile also changes dynamically during T cell differentiation. Sequence analysis of the cloned mature miRNAs revealed an extensive degree of end polymorphism. While 3'end polymorphisms dominated, heterogeneity at both ends, resembling drosha/dicer processing shift was also seen in miR-142, suggesting a possible novel mechanism to generate new miRNA and/or to diversify miRNA target selection. Overall, our results suggest that dynamic changes in the expression of miRNAs may be important for the regulation of gene expression during antigen-induced T cell differentiation. Our study also suggests possible novel mechanisms for miRNA biogenesis and function.  相似文献   

19.
MicroRNAs (miRNAs) represent an abundant group of small non-coding RNAs that regulate gene expression, and have been demonstrated to play roles as tumor suppressor genes (oncogenes), and affect homeostatic processes such as development, cell proliferation, and cell death. Subsequently, epidermal growth factor-like domain 7 (EGFL7), which is confirmed to be involved in cellular responses such as cell migration and blood vessel formation, is identified as a potential miR-126 target by bioinformatics. However, there is still no evidence showing EGFL7’s relationship with miR-126 and the proliferation of lung cancer cells. The aim of this work is to investigate whether miR-126, together with EGFL7, have an effect on non-small cell lung cancer (NSCLC) cells’ proliferation. Therefore, we constructed overexpressed miR-126 plasmid to target EGFL7 and transfected them into NSCLC cell line A549 cells. Then, we used methods like quantitative RT-PCR, Western blot, flow cytometry assay, and immunohistochemistry staining to confirm our findings. The result was that overexpression of miR-126 in A549 cells could increase EGFL7 expression. Furthermore, the most notable finding by cell proliferation related assays is that miR-126 can inhibit A549 cells proliferation in vitro and inhibit tumor growth in vivo by targeting EGFL7. As a result, our study demonstrates that miR-126 can inhibit proliferation of non-small cell lung cancer cells through one of its targets, EGFL7.  相似文献   

20.
MicroRNAs (miRNA) are small non-coding RNAs that inhibit gene expression through binding to complementary messenger RNA sequences. miRNAs have been predicted to target genes important for pancreas development, proper endocrine cell function and metabolism. We previously described that miRNA-7 (miR-7) was the most abundant and differentially expressed islet miRNA, with 200-fold higher expression in mature human islets than in acinar tissue. Here we have analyzed the temporal and spatial expression of miR-7 in human fetal pancreas from 8 to 22 weeks of gestational age (wga). Human fetal (8–22 wga) and adult pancreases were processed for immunohistochemistry, in situ hybridization, and quantitative RT-PCR of miRNA and mRNA. miR-7 was expressed in the human developing pancreas from around 9 wga and reached its maximum expression levels between 14 and 18 wga, coinciding with the exponential increase of the pancreatic endocrine hormones. Throughout development miR-7 expression was preferentially localized to endocrine cells and its expression persisted in the adult pancreas. The present study provides a detailed analysis of the spatiotemporal expression of miR-7 in developing human pancreas. The specific localization of miR-7 expression to fetal and adult endocrine cells indicates a potential role for miR-7 in endocrine cell differentiation and/or function. Future functional studies of a potential role for miR-7 function in islet cell differentiation and physiology are likely to identify novel targets for the treatment of diabetes and will lead to the development of improved protocols for generating insulin-producing cells for cell replacement therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号