首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five fusion proteins between Z domains derived from Staphylococcal Protein A and Green Fluorescent Protein or Human Proinsulin were produced on the periplasm of Escherichia coli. The effects of the molecular weight and amino acid composition of the translocated peptide, culture medium composition, and growth phase of the bacterial culture were analyzed regarding the expression and periplasmic secretion of the recombinant proteins. It was found that secretion was not affected by the size of the translocated peptide (17-42 kDa) and that the highest periplasmic production values were obtained on the exponential phase of growth. Moreover, the highest periplasmic values were obtained in minimal medium, showing the relevance of the culture medium composition on secretion. In silico prediction analysis suggested that with respect to the five proteins used in this study, those that are prone to form alpha-helix structures are more translocated to the periplasm.  相似文献   

2.
When a staining technique using phosphotungstic acid (PTA) in 10% (w/v) chromic acid was applied to cells of Escherichia coli, the periplasmic space was seen as a dark 15-nm-thick layer of uniform appearance and constant width. Our observations are consistent with peptidoglycan being the main material stained. Isolated sacculi as well as purified peptidoglycan (protein free) were also stained by the same procedure, the thickness of the peptidoglycan being 8.8 +/- 1.8 and 6.6 +/- 1.5 nm, respectively. The increased thickness of the PTA-stained layer in stationary phase cells correlated well with the increased thickness of isolated sacculi or purified peptidoglycan and with the increased amount of peptidoglycan in such cells. Thickness measurements on isolated peptidoglycan were compatible with a two to three layer structure for material from exponential phase cells and with a four to five layer structure for that from stationary phase cells. Furthermore, the results indicated an uneven distribution of peptidoglycan material in the periplasmic space, the peptidoglycan spanning the space from the inner to the outer membrane.  相似文献   

3.
Treatment of growing Escherichia coli B with lanthanide ions [lanthanum(III), terbium(III), and europium(III)] and subsequent aldehyde-OsO4 fixation caused areas of high contrast to appear within the periplasm (the space between inner and outer membrane of the cell envelope). X-ray microanalysis of ultrathin sections of Epon-embedded or acrylic resin-embedded cells revealed the presence of the lanthanide and of phosphorus in the areas, whose contrast greatly exceeded that of other stained structures. Comparatively small amounts of the lanthanide were also present in the outer membrane and in the cytoplasm. The distribution of the periplasmic areas of high contrast was found to be random and not clustered at areas of current or future septum formation. Irregular cell shapes were observed after lanthanide treatment before onset of fixation. In contrast to glutaraldehyde-OsO4 fixation, glutaraldehyde used as the sole fixer caused a scattered distribution of the lanthanide. Cryofixation (slam-freezing) and freeze substitution revealed a lanthanum stain at both the periplasm and the outer part of the outer membrane. Deenergization of the cell membrane by either phage T4 or carbonyl cyanide m-chlorophenylhydrazone abolished the metal accumulation. Furthermore, addition of excess calcium, administered together with the lanthanide solution, diminished the quantity and size of areas of high contrast. Cells grown in media of high NaCl concentration revealed strongly stained areas of periplasmic precipitates, whereas cells grown under low-salt conditions showed very few high-contrast patches in the periplasm. Terbium treatment (during fixation) enhanced the visibility of the sites of inner-outer membrane contact (the membrane adhesion sites) in plasmolized cells, possibly as the result of an accumulation of the metal at the adhesion domains. The data suggest a rapid interaction of the lanthanides with components of the cell envelope, the periplasm, and the energized inner membrane.  相似文献   

4.
The production of human proinsulin in its disulfide-intact, native form in Escherichia coli requires disulfide bond formation and the periplasmic space is the favourable compartment for oxidative folding. However, the secretory expression of proinsulin is limited by its high susceptibility to proteolysis and by disulfide bond formation, which is rate-limiting for proinsulin folding. In this report we describe a method for the production of high amounts of soluble, native human proinsulin in E. coli. We fused proinsulin to the C-terminus of the periplasmic disulfide oxidoreductase DsbA via a trypsin cleavage site. As DsbA is the main catalyst of disulfide bond formation in E. coli, we expected increased yields of proinsulin by intra- or intermolecular catalysis of disulfide bond formation. In the context of the fusion protein, proinsulin was found to be stabilised, probably due to an increased solubility and faster disulfide bond formation. To increase the yield of DsbA-proinsulin in the periplasm, several parameters were optimised, including host strains and cultivation conditions, and in particular growth medium composition and supplement of low molecular weight additives. We obtained a further, about three-fold increase in the amount of native DsbA-proinsulin by addition of L-arginine or ethanol to the culture medium. The maximum yield of native human proinsulin obtained from the soluble periplasmic fraction after specific cleavage of the fusion protein with trypsin was 9.2 mg g(-1), corresponding to 1.8% of the total cell protein.  相似文献   

5.
大肠杆菌周质蛋白提取工艺的改进   总被引:1,自引:0,他引:1  
介绍一种简捷高效的大肠杆菌周质蛋白提取工艺,即用含一定浓度溶菌酶的细胞裂解缓冲液一步提取周质蛋白,与传统的高渗和低渗两步提取法相比,不仅操作简单快捷,并且显著的提高了大肠杆菌周质蛋白的提取率.  相似文献   

6.
The Bacillus subtilis alpha-amylase structural gene (amyE) lacking its own signal peptide coding sequence was joined to the end of the Escherichia coli alkaline phosphatase (phoA) signal peptide coding sequence by using the technique of oligonucleotide-directed site-specific deletion. On induction of the phoA promoter, the B. subtilis alpha-amylase was expressed and almost all the activity was found in the periplasmic space of E. coli. The sequence of the five amino-terminal amino acids of the secreted polypeptide was Glu-Thr-Ala-Asn-Lys-, and thus the fused protein was correctly processed by the E. coli signal peptidase at the end of the phoA signal peptide.  相似文献   

7.
High level expression of TEM beta-lactamase results in the accumulation of precursor and mature protein in the insoluble fraction of Escherichia coli. The mature polypeptide is sequestered in protein aggregates (inclusion bodies) located within the periplasmic space whereas the insoluble precursor is present in the cytoplasm. With the native beta-lactamase, aggregation is observed when the rate of expression exceeds 2.5% of the total protein synthesis rate. Substitution of the native signal sequence with the outer membrane protein A (OmpA) leader peptide results in extensive aggregation of only the mature protein. Furthermore, for OmpA-beta-lactamase, the accumulation of mature insoluble protein is independent of the rate of protein synthesis. These observations cannot be accounted by the kinetics of export of the OmpA-beta-lactamase and the native precursor, therefore suggesting that the signal sequence affects the conformation of the newly secreted mature polypeptide and in turn, the folding pathway. Previously, we have shown that the aggregation of the mature protein secreted using its own signal sequence can be inhibited by growing the cells in the presence of non-metabolizable sugars such as sucrose (Bowden, G., and Georgiou, G. (1988) Biotechnol. Prog. 4, 97-101). We show here that this phenomenon is not related to osmotic effects, changes in beta-lactamase translation or precursor processing. It follows that the addition of sugars exerts a direct effect on the in vivo pathway of aggregation and folding, in analogy with the well characterized effect of sugars in vitro.  相似文献   

8.
Facultative anaerobic bacteria, such as Escherichia coli, are more resistant to cephalosporin antibiotics during anaerobic growth. Strict anaerobic ambience reduces beta-lactamase production or the enzyme affinities for their substrates. A different balance between DNA gyrase and topoisomerase I activity, during aerobic and anaerobic growth condition, could be related to the bacteria behavior.  相似文献   

9.
Precursors of two secreted periplasmic proteins in Escherichia coli, arabinose-binding protein and maltose-binding protein, were synthesized in vitro on membrane-bound polysomes. Addition of Triton X-100 to the system resulted in processing of the precursors to mature forms.  相似文献   

10.
An efficient expression/export vector comprising the entire phoS (phosphate binding protein) gene fused to a synthetic gene encoding the human growth hormone releasing factor (mhGRF) has recently been constructed [1]. The hybrid protein (PhoS-mhGRF) was exported to the periplasmic space. However, in this location proteolytic degradation occurred at the C-terminal region. Phenylmethylsulfonyl fluoride (PMSF) increased the stability of the hybrid protein indicating that a serine protease may be involved in the proteolytic cleavage. The correct export and subsequent degradation of the recombinant protein in the periplasmic space were demonstrated in situ using double immunogold labeling on ultrathin sections. Using a phoS-based expression/export vector in the presence of PMSF, 2-4 mg of hybrid protein per liter of culture could be obtained.  相似文献   

11.
Expression of the pCloDF13-encoded bacteriocin-release protein (BRP) results in the release of periplasmic proteins into the culture medium. The BRP-mediated release of a periplasmic protein was investigated and optimized. As a periplasmic model protein, the 50-kDa dimeric E. coli fimbrial molecular chaperone FaeE was used. Plasmids were constructed for the simultaneous expression of the BRP and FaeE, controlled by independently inducible promoters. The efficiency of FaeE release increased when the BRP was targeted by the unstable murein lipoprotein signal peptide, instead of by its own stable signal peptide. Furthermore, optimal efficacy of FaeE release was found when cells of E. coli strain C600 were used, which harboured one plasmid encoding both FaeE and BRP instead of two separate plasmids and which were cultured at 37°C in broth supplemented with MgCl2. Maximal production levels of 21 mg FaeE/l culture were obtained.  相似文献   

12.
探究重组大肠杆菌产尿素酶B(urease B subunit, UreB)的高密度发酵条件。通过实验室摇瓶和30 L发酵罐对UreB基因工程菌的发酵条件进行优化。结果表明:30 L发酵罐中以TB培养基为发酵培养基,接种量为5%,发酵温度为37 ℃,pH为6.8,溶氧量为30%左右,培养至2 h开始恒速流加50%甘油,4 h流加50%酵母提取物和50%胰蛋白胨,并加入终浓度为0.5 mmol/L的异丙基β-D-硫代半乳糖苷(isopropyl β-D-thiogalactoside,IPTG),诱导表达4 h,结束发酵,所得菌体干物质约为25.7 g/L,UreB表达量为31.4%。此工艺可以提高UreB的产量。  相似文献   

13.
The cell surface expression of group 2 capsular polysaccharides involves the translocation of the polysaccharide from its site of synthesis on the inner face of the cytoplasmic membrane onto the cell surface. The transport process is independent of the repeat structure of the polysaccharide, and translocation across the periplasm requires the cytoplasmic membrane-anchored protein KpsE and the periplasmic protein KpsD. In this paper we establish the topology of the KpsE protein and demonstrate that the C terminus interacts with the periplasmic face of the cytoplasmic membrane. By chemical cross-linking we show that KpsE is likely to exist as a dimer and that dimerization is independent of the other Kps proteins or the synthesis of capsular polysaccharide. No interaction between KpsD and KpsE could be demonstrated by chemical cross-linking, although in the presence of both KpsE and Lpp, KpsD could be cross-linked to a 7-kDa protein of unknown identity. In addition, we demonstrate that KpsD is present not only within the periplasm but is also in both the cytoplasmic and outer membrane fractions and that the correct membrane association of KpsD was dependent on KpsE, Lpp, and the secreted polysaccharide molecule. Both KpsD and KpsE showed increased proteinase K sensitivity in the different mutant backgrounds, reflecting conformational changes in the KpsD and KpsE proteins as a result of the disruption of the transport process. Collectively the data suggest that the trans-periplasmic export involves KpsD acting as the link between the cytoplasmic membrane transporter and the outer membrane with KpsE acting to facilitate this transport process.  相似文献   

14.
Escherichia coli grows over a wide range of pHs (pH 4.4 to 9.2), and its own metabolism shifts the external pH toward either extreme, depending on available nutrients and electron acceptors. Responses to pH values across the growth range were examined through two-dimensional electrophoresis (2-D gels) of the proteome and through lac gene fusions. Strain W3110 was grown to early log phase in complex broth buffered at pH 4.9, 6.0, 8.0, or 9.1. 2-D gel analysis revealed the pH dependence of 19 proteins not previously known to be pH dependent. At low pH, several acetate-induced proteins were elevated (LuxS, Tpx, and YfiD), whereas acetate-repressed proteins were lowered (Pta, TnaA, DksA, AroK, and MalE). These responses could be mediated by the reuptake of acetate driven by changes in pH. The amplified proton gradient could also be responsible for the acid induction of the tricarboxylic acid (TCA) enzymes SucB and SucC. In addition to the autoinducer LuxS, low pH induced another potential autoinducer component, the LuxH homolog RibB. pH modulated the expression of several periplasmic and outer membrane proteins: acid induced YcdO and YdiY; base induced OmpA, MalE, and YceI; and either acid or base induced OmpX relative to pH 7. Two pH-dependent periplasmic proteins were redox modulators: Tpx (acid-induced) and DsbA (base-induced). The locus alx, induced in extreme base, was identified as ygjT, whose product is a putative membrane-bound redox modulator. The cytoplasmic superoxide stress protein SodB was induced by acid, possibly in response to increased iron solubility. High pH induced amino acid metabolic enzymes (TnaA and CysK) as well as lac fusions to the genes encoding AstD and GabT. These enzymes participate in arginine and glutamate catabolic pathways that channel carbon into acids instead of producing alkaline amines. Overall, these data are consistent with a model in which E. coli modulates multiple transporters and pathways of amino acid consumption so as to minimize the shift of its external pH toward either acidic or alkaline extreme.  相似文献   

15.
The interactions between the plasmid-borne copper resistance determinant, pco, and the main copper export system in Escherichia coli have been investigated and no direct interaction has been found. The PcoE and PcoC proteins are periplasmic and PcoC binds one Cu ion per protein molecule. PcoA is also periplasmic and can substitute for the chromosomally encoded CueO protein. The pco determinant is proposed to exert its effect through periplasmic handling of excess copper ions and to increase the level of resistance to copper ions above that conferred by copA alone.  相似文献   

16.
The Escherichia coli DsbA protein is the major oxidative catalyst in the periplasm. Dartigalongue et al. (EMBO J., 19, 5980-5988, 2000) reported that null mutations in the ompL gene of E.coli fully suppress all phenotypes associated with dsbA mutants, i.e. sensitivity to the reducing agent dithiothreitol (DTT) and the antibiotic benzylpenicillin, lack of motility, reduced alkaline phosphatase activity and mucoidy. They showed that OmpL is a porin and hypothesized that ompL null mutations exert their suppressive effect by preventing efflux of a putative oxidizing-reducing compound into the medium. We have repeated these experiments using two different ompL null alleles in at least three different E.coli K-12 genetic backgrounds and have failed to reproduce any of the ompL suppressive effects noted above. Also, we show that, contrary to earlier results, ompL null mutations alone do not result in partial DTT sensitivity or partial motility, nor do they appreciably affect bacterial growth rates or block propagation of the male-specific bacteriophage M13. Thus, our findings clearly demonstrate that ompL plays no perceptible role in modulating redox potential in the periplasm of E.coli.  相似文献   

17.
POMT7, which is an O-methyltransferase from poplar, transfers a methyl group to several flavonoids that contain a 7-hydroxyl group. POMT7 has been shown to have a higher affinity toward quercetin, and the reaction product rhamnetin has been shown to inhibit the formation of beta-amyloid. Thus, rhamnetin holds great promise for use in therapeutic applications; however, methods for mass production of this compound are not currently available. In this study, quercetin was biotransformed into rhamnetin using Escherichia coli expressing POMT7, with the goal of developing an approach for mass production of rhamnetin. In order to maximize the production of rhamnetin, POMT7 was subcloned into four different E. coli expression vectors, each of which was maintained in E. coli with a different copy number, and the best expression vector was selected. In addition, the S-adenosylmethionine biosynthesis pathway was engineered for optimal cofactor production. Through the combination of optimized POMT7 expression and cofactor production, the production of rhamnetin was increased up to 111 mg/l, which is approximately 2-fold higher compared with the E. coli strain containing only POMT7.  相似文献   

18.
19.
20.
The feed profile of glucose during fedbatch cultivation could be used to influence the retention of the periplasmic product ZZ-cutinase. An increased feed rate led to a higher production rate but also to an increased specific leakage, which reduced the periplasmic retention. Three growth rates: 0.3, 0.2 and 0.1 h(-1) where studied and resulted in 20, 9 and 6%, respectively, of the total ZZ-cutinase accumulating in the medium. It was also shown that leakage during fedbatch production of a Fab fragment was also influenced by the feed rate in a similar manner to ZZ-cutinase. If intracellular product accumulation is desired the advantage of a high productivity, resulting from a high substrate feed rate, is diminished because of a reduced product retention. Biochemical analysis revealed that the growth rate, resulting from a glucose limited feed, influenced the outer membrane protein compositions with respect to OmpF and LamB, whilst OmpA was largely unaffected. As the feed rate increased the amount of total outer membrane protein decreased. When ZZ-cutinase was produced there were further reductions in outer membrane protein accumulation, by 82, 100 and 22% for OmpF, LamB and OmpA, respectively, and the total reduction was almost 60% with a high product formation rate. We suggest that the reduced titre of the outer membrane proteins, OmpF and LamB, may have contributed to a reduced ability for the cell to retain recombinant protein secreted to the periplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号