首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tyrosine phosphorylation of the insulin receptor is the initial event following receptor binding to insulin, and it induces further tyrosine phosphorylation of various intracellular molecules. This signaling is countered by protein tyrosine phosphatases (PTPases), which reportedly are associated with insulin resistance that can be reduced by regulation of PTPases. Protein tyrosine phosphatase 1B (PTP1B) and leukocyte antigen-related PTPase (LAR) are the PTPases implicated most frequently in insulin resistance and diabetes mellitus. Here, we show that PTP1B and LAR are expressed in human fibroblasts, and we examine the regulation of PTPase activity in fibroblasts from patients with an insulin receptor gene mutation as an in vitro model of insulin resistance. Total PTPase activity was significantly lower in the cytosolic and membrane fractions of fibroblasts with mutations compared with controls (p<0.05). Insulin stimulation of fibroblasts with mutations resulted in a significantly smaller increase in PTP1B activity compared with stimulation of wild-type fibroblasts (p<0.05). This indicates that insulin receptor gene mutations blunt increases in PTPase activity in response to insulin, possibly via a negative feedback mechanism. Our data suggest that the PTPase activity in patients with insulin receptor gene mutation and severe insulin resistance may differ from that in ordinary type 2 diabetes.  相似文献   

2.
Cloning and expression of a yeast protein tyrosine phosphatase.   总被引:6,自引:0,他引:6  
To study the regulation of tyrosine phosphorylation/dephosphorylation in Saccharomyces cerevisiae, a protein tyrosine phosphatase (PTPase) was cloned by the polymerase chain reaction (PCR). Conserved amino acid sequences within the mammalian PTPases were used to design primers which generated a yeast PCR fragment. The sequence of the PCR fragment encoded a protein with homology to the mammalian PTPases. The PCR fragment was used to identify the yeast PTP1 gene which has an open reading frame encoding a 335-amino acid residue protein. This yeast PTPase shows 26% sequence identity to the rat PTPase, although highly conserved residues within the mammalian enzymes are invariant in the yeast protein. The yeast PTP1 is physicallt linked to the 5'-end of a heat shock gene SSB1. This yeast PTP1 gene was expressed in Escherichia coli and obtained in a highly purified form by a single affinity chromatography step. The recombinant yeast PTPase hydrolyzed phosphotyrosine containing substrates approximately 1000 times faster than a phosphoserine containing substrate. Gene disruption of yeast PTP1 has no visible effect on vegetative growth.  相似文献   

3.
Protein-tyrosine phosphatases (PTPases) play key roles in regulating tyrosine phosphorylation levels in cells, yet the identity of their substrates remains limited. We report here on the identification of PTPases capable of dephosphorylating the phosphorylated immune tyrosine-based activation motifs present in the T cell receptor zeta subunit. To characterize these PTPases, we purified enzyme activities directed against the phosphorylated T cell receptor zeta subunit by a combination of anion and cation chromatography procedures. A novel ELISA-based PTPase assay was developed to rapidly screen protein fractions for enzyme activity following the various chromatography steps. We present data that SHP-1 and PTPH1 are present in highly enriched protein fractions that exhibit PTPase activities toward a tyrosine-phosphorylated TCR zeta substrate (specific activity ranging from 0.23 to 40 pmol/min/microg). We also used a protein-tyrosine phosphatase substrate-trapping library comprising the catalytic domains of 47 distinct protein-tyrosine phosphatases, representing almost all the tyrosine phosphatases identified in the human genome. PTPH1 was the predominant phosphatase capable of complexing phospho-zeta. Subsequent transfection assays indicated that SHP-1 and PTPH1 are the two principal PTPases capable of regulating the phosphorylation state of the TCR zeta ITAMs, with PTPH1 directly dephosphorylating zeta. This is the first reported demonstration that PTPH1 is a candidate PTPase capable of interacting with and dephosphorylating TCR zeta.  相似文献   

4.
The protein tyrosine phosphatases (PTPases) are a group of regulatory enzymes that are critically important to a wide variety of cellular functions. A number of these PTPases have significant potential as targets for therapeutic intervention, for instance, in diabetes and autoimmune disease treatment. The hydroxylamine complex, bis(N,N-dimethylhydroxamido)hydroxooxovanadate (DMHAV), is an excellent inhibitor of the two PTPases, protein tyrosine phosphatase 1B (PTP1B) and leucocyte common antigen related phosphatase (LAR). However, because of the similarity of the active site architecture within the group of known PTPases, DMHAV is probably an effective inhibitor of most PTPases. Information gleaned from studies of the mechanism of inhibition of PTPases by peptide-derived inhibitors, together with information from comparative protein modelling and studies of the aqueous chemistry of DMHAV, has provided insights for the development of selective PTPase inhibitors. In cell cultures, DMHAV is effective in increasing phosphotyrosine levels on the insulin receptor and greatly facilitates glucose transport and glycogen synthesis. Selective PTPase inhibitors that are developed from the basis of the hydroxylamine motif may lead to effective vanadate-based complexes that have potential as therapeutic agents.  相似文献   

5.
Protein tyrosine phosphatases (PTPases) and protein tyrosine kinase (PTKases) regulate the phosphorylation and dephosphorylation of tyrosine residues in proteins, events that are essential for a variety of cellular functions. PTPases such as PTP1B and the Yersinia PTPase play an important role in diseases including type II diabetes and bubonic plague. A library of 67 bidentate PTPase inhibitors that are based on the alpha-ketocarboxylic acid motif has been synthesized using parallel solution-phase methods. Two aryl alpha-ketocarboxylic acids were tethered to a variety of different diamine linkers through amide bonds. The compounds were assayed in crude form against the Yersinia PTPase, PTP1B, and TCPTP. Six compounds were selected for further evaluation, in purified form, against the Yersinia PTPase, PTP1B, TCPTP, LAR, and CD45. These compounds had IC50 values in the low micromolar range against the Yersinia PTPase, PTP1B, and TCPTP, showed good selectivity for PTP1B over LAR, and modest selectivity over CD45. The correlation between linker structure and inhibitor activity shows that aromatic groups in the linker can play an important role in determining binding affinity in this class of inhibitors.  相似文献   

6.
The insulin signaling pathway is activated by tyrosine phosphorylation of the insulin receptor and key post-receptor substrate proteins and balanced by the action of specific protein-tyrosine phosphatases (PTPases). PTPase activity, in turn, is highly regulated in vivo by oxidation/reduction reactions involving the cysteine thiol moiety required for catalysis. Here we show that insulin stimulation generates a burst of intracellular H(2)O(2) in insulin-sensitive hepatoma and adipose cells that is associated with reversible oxidative inhibition of up to 62% of overall cellular PTPase activity, as measured by a novel method using strictly anaerobic conditions. The specific activity of immunoprecipitated PTP1B, a PTPase homolog implicated in the regulation of insulin signaling, was also strongly inhibited by up to 88% following insulin stimulation. Catalase pretreatment abolished the insulin-stimulated production of H(2)O(2) as well as the inhibition of cellular PTPases, including PTP1B, and was associated with reduced insulin-stimulated tyrosine phosphorylation of its receptor and high M(r) insulin receptor substrate (IRS) proteins. These data provide compelling new evidence for a redox signal that enhances the early insulin-stimulated cascade of tyrosine phosphorylation by oxidative inactivation of PTP1B and possibly other tyrosine phosphatases.  相似文献   

7.
W Lu  D Gong  D Bar-Sagi  P A Cole 《Molecular cell》2001,8(4):759-769
The regulation of protein tyrosine phosphatase (PTPase) SHP-2 is proposed to involve tyrosine phosphorylation on two tail tyrosine residues. Using "expressed protein ligation", nonhydrolyzable phosphotyrosine analogs were introduced at known phosphorylation sites in SHP-2. Biochemical analysis suggests that a phosphonate at Tyr542 interacts intramolecularly with the N-terminal SH2 domain to relieve basal inhibition of the PTPase, whereas a phosphonate at Tyr-580 stimulates the PTPase activity by interaction with the C-terminal SH2 domain. Microinjection experiments indicate that a single phosphorylation of Tyr-542 of SHP-2 is sufficient to activate the MAP kinase pathway in living cells. These studies support a novel mechanism explaining how tyrosine phosphorylation of a PTPase is important in signal transduction.  相似文献   

8.
Cancer cell resistance limits the efficacy of IFNs. In this study, we show that sodium stibogluconate (SSG) and IFN-alpha synergized to overcome IFN-alpha resistance in various human cancer cell lines in culture and eradicated IFN-alpha-refractory WM9 human melanoma tumors in nude mice with no obvious toxicity. SSG enhanced IFN-alpha-induced Stat1 tyrosine phosphorylation, inactivated intracellular SHP-1 and SHP-2 that negatively regulate IFN signaling, and induced cellular protein tyrosine phosphorylation in cancer cell lines. These effects are consistent with inactivation of phosphatases as the basis of SSG anticancer activity. Characterization of SSG by chromatography revealed that only selective compounds in SSG were effective protein tyrosine phosphatase inhibitors. These observations suggest the potential of SSG as a clinically usable protein tyrosine phosphatase inhibitor in cancer treatment and provide insights for developing phosphatase-targeted therapeutics.  相似文献   

9.
The leukocyte immunoglobulin-like receptor (LILR) B4 belongs to a family of cell surface receptors that possesses cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). LILRB4 is believed to down-regulate activation signals mediated by non-receptor tyrosine kinase cascades through the recruitment of SHP-1. However, the exact mechanisms of LILRB4-mediated inhibition are not fully elucidated. In this study, we demonstrate high level surface expression of LILRB4 on THP-1 cells and primary peripheral blood monocytes, which profoundly inhibited production of a key pro-inflammatory cytokine (TNFα) induced by FcγRI (CD64). We also report that LILRB4 aggregated to sites of activation upon co-ligation with CD64 and that this may enhance its inhibitory effects. Cross-linking of CD64 on THP-1 cells markedly increased phosphorylation of multiple proteins including tyrosine kinases and signaling molecules (Lck, Syk, LAT, and Erk), an adaptor protein that targets protein-tyrosine kinases for degradation (c-Cbl) and a protein involved in the formation of actin cytoskeletal rearrangement (α-actinin-4). Co-ligation of LILRB4 considerably reduced CD64-mediated phosphorylation of Lck, Syk, LAT, Erk, and c-Cbl but not α-actinin-4, suggesting selective inhibition of signaling molecules. Treatment of cells with a broad-spectrum phosphatase inhibitor, sodium pervanadate (SP), significantly reversed LILRB4-mediated inhibition of TNFα production and protein tyrosine phosphorylation. In comparison, treatment with an SHP-1 specific inhibitor, sodium stibogluconate (SS) has no effects indicating involvement of phosphatase(s) other than SHP-1 in LILRB4 signaling. Collectively, our data show LILRB4 is a potent inhibitor of monocytes activation. This may provide a new potential therapeutic strategy for inflammatory conditions characterized by excessive TNFα production.  相似文献   

10.
Abstract: Nerve growth factor (NGF) treatment of rat PC12 pheochromocytoma cells results in an increase in the tyrosine phosphorylation of the NGF receptor, TrkA, leading to differentiation to a neuronal phenotype. Dephosphorylation by protein tyrosine phosphatases (PTPases) is thought to play an important role in regulating this signaling pathway. To identify PTPases that are recruited to the activated TrkA receptor, we used an ingel PTPase assay to examine the presence of PTPases in TrkA immunoprecipitates. The Src homology 2 domain containing PTPase SHP-2 was found to associate transiently with TrkA following receptor activation, reaching a peak after 1 min of NGF treatment and then decreasing rapidly. The association of SHP-2 with TrkA was accompanied by the tyrosine phosphorylation of SHP-2 and an association of SHP-2 with multiple tyrosine-phosphorylated proteins. In addition, the PTPase activity in SHP-2 immunoprecipitates increased greater than twofold after 1 min of NGF treatment. This is the first demonstration that the association of SHP-2 with TrkA is induced by NGF and that this association leads to SHP-2 activation and tyrosine phosphorylation. We conclude that SHP-2 plays a significant role in early biochemical events in TrkA-mediated signal transduction.  相似文献   

11.
Pyp3 PTPase acts as a mitotic inducer in fission yeast.   总被引:10,自引:3,他引:7       下载免费PDF全文
J B Millar  G Lenaers    P Russell 《The EMBO journal》1992,11(13):4933-4941
The p34cdc2 M-phase kinase is regulated by inhibitory phosphorylation of Tyr15, largely through the actions of the p107wee1 tyrosine kinase and p80cdc25 protein tyrosine phosphatase (PTPase). In this study we demonstrate that a second PTPase, encoded by pyp3, also contributes to tyrosyl dephosphorylation of p34cdc2. Pyp3 was identified as a high copy suppressor of a cdc25- mutation. The pyp3 gene encodes a 33 kDa PTPase that is more closely related to human PTP1B and fission yeast pyp1 and pyp2 PTPases than to cdc25. Pyp3 does not share an essential overlapping function with pyp1 or pyp2. We demonstrate that disruption of pyp3 causes a mitotic delay that is greatly exacerbated in cells that are partially defective for cdc25 function and that pyp3 function is essential in cdc25-disruption wee1- strains. Pyp3 PTPase effectively dephosphorylates and activates the p34cdc2 kinase in vitro. We conclude that the pyp3 PTPase acts cooperatively with p80cdc25 to dephosphorylate Tyr15 of p34cdc2.  相似文献   

12.
Utilizing three proteins plus tyrosine-glutamate copolymer as substrates, all of which are subjected to (near) stoichiometrical phosphorylation exclusively on tyrosine residues, we partially purified four different protein-tyrosine phosphatases (PTPases) from rat liver cytosol which differed in substrate preference. Of the four PTPases, tentatively termed L1, L2, L3, and L4, PTPase L1 was purified to apparent homogeneity by a procedure involving chromatography on DEAE-cellulose at pH 7.0, Blue Sepharose, DEAE-cellulose at pH 7.6, hydroxyapatite, Phenyl Sepharose, Mono Q, and TSKgel Heparin. PTPase L1 was purified about 7000-fold from the extract and 0.27 mg was isolated from 1000 g liver corresponding to a yield of 13% from the Blue Sepharose step where it had become freed from any other PTPases detectable by our assay procedure. The purified PTPase L1 showed a major protein band of 67 kDa on SDS/PAGE. Catalytically, PTPase L1 had a specific activity of about 6500 nmol Pi released min-1mg-1 toward tyrosine-glutamate copolymer phosphorylated on tyrosine residues. PTPase L1 exhibited very low sensitivities to PTPase inhibitors such as zinc acetate, sodium vanadate, and acidic compounds as compared with those of most of the PTPases purified thus far. Amino acid sequence analysis of the purified PTPase L1 revealed a partial peptide sequence showing similarity to the catalytic domain core sequences conserved in the PTPase family. PTPase L1 was most similar to a PTPase termed PTP1C encoded by a human breast carcinoma cDNA but the identity was 55% over 117 residues spanning nearly half of the catalytic domain of PTP1C. The analysis also revealed another partial peptide sequence (113 residues) 70% identical with the sequence corresponding to 68% of two adjacent copies of the src homology region 2(SH-2 domain) identified in PTP1C. Besides those peptide sequences, PTPase L1 had regional sequences which were 70-90% identical with the residues lying between the two SH-2 domains or between the more C-terminal SH-2 domain and the catalytic domain of the carcinoma PTPase.  相似文献   

13.
Protein-tyrosine phosphatases (PTPases) form a large family of enzymes that serve as key regulatory components in signal transduction pathways. Defective or inappropriate regulation of PTPase activity leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases including cancers and diabetes. For example, recent gene knockout studies in mice identify PTP1B as a promising target for anti-diabetes/obesity drug discovery. Thus, there is intense interest in obtaining specific and potent PTPase inhibitors for biological studies and pharmacological development. However, given the highly conserved nature of the PTPase active site, it is unclear whether selectivity in PTPase inhibition can be achieved. We describe a combinatorial approach that is designed to target both the active site and a unique peripheral site in PTP1B. Compounds that can simultaneously associate with both sites are expected to exhibit enhanced affinity and specificity. We also describe a novel affinity-based high-throughput assay procedure that can be used for PTPase inhibitor screening. The combinatorial library/high-throughput screen protocols furnished a small molecule PTP1B inhibitor that is both potent (K(i) = 2.4 nm) and selective (little or no activity against a panel of phosphatases including Yersinia PTPase, SHP1, SHP2, LAR, HePTP, PTPalpha, CD45, VHR, MKP3, Cdc25A, Stp1, and PP2C). These results demonstrate that it is possible to acquire potent, yet highly selective inhibitors for individual members of the large PTPase family of enzymes.  相似文献   

14.
Protein tyrosine phosphatases (PTPases) have been suggested to modulate the insulin receptor signal transduction pathways.We studied PTPases in Psammomys obesus, an animal model of nutritionally induced insulin resistance. No changes in the protein expression level of src homology PTPase 2 (SHP-2) (muscle, liver) or leukocyte antigen receptor (LAR) (liver) were detected. In contrast, the expression level of PTPase 1B (PTP 1B) in the skeletal muscle, but not in liver, was increased by 83% in the diabetic animals, compared with a diabetes-resistant line. However, PTP 1B– specific activity (activity/protein) significantly decreased (50% to 56%) in skeletal muscle of diabetic animals, compared with both the diabetes-resistant line and diabetes-prone animals. In addition, PTP 1B activity was inversely correlated to serum glucose level (r = –.434, P < .02). These findings suggest that PTP 1B, though overexpressed, is not involved in the susceptibility to insulin resistance in Psammomys obesus and is secondarily attenuated by hyperglycemia or other factors in the diabetic milieu.  相似文献   

15.
目的: 探讨高分压氧下淋巴细胞内酪氨酸磷酸酶SHP-1和CD45功能状态的变化.方法: 分别用能引起功能发生不同变化的高分压氧处理淋巴细胞,检测细胞内酪氨酸磷酸酶SHP-1和CD45的催化活性、蛋白量及蛋白磷酸化水平.结果: 经各压力-时程的高分压氧处理后,SHP-1的活性均降低;而CD45仅在具有抑制细胞功能的氧剂量处理后其活性才降低.两种酶的蛋白表达量及酪氨酸磷酸化水平没有发生显著变化.结论: 高分压氧下SHP-1和CD45活性降低可能是由于酶结构受增多的活性氧破坏引起;SHP-1和CD45可能是所选高分压氧方案引起淋巴细胞功能变化的作用位点.  相似文献   

16.
Seven protein tyrosine phosphatase (PTPase) genes have been identified in the fruit-fly Drosophila melanogaster. Four of these genes encode receptor-linked PTPases (R-PTPs) that are expressed on central nervous system axons in the embryo. Each axonal R-PTP has an extracellular domain that is homologous to vertebrate adhesion molecules and to identified mammalian R-PTPs. Two non-receptor PTPase genes have been isolated to date. One of these, corkscrew (csw), encodes an SH2 domain-containing PTPase that appears to be a homolog of mammalian PTP1D. Genetic evidence indicates that the csw PTPase is involved in the transduction of signals from receptor tyrosine kinases to their down-stream targets, which include Ras proteins.  相似文献   

17.
Acetaldehyde-induced cytotoxicity is an important factor in pathogenesis of alcohol-related diseases; however, the mechanism of this toxicity is unknown. We recently showed that acetaldehyde increases epithelial paracellular permeability. We asked whether protein tyrosine phosphorylation via modulation of tyrosine kinases and/or PTPases is a mechanism involved in acetaldehyde-induced disruption of the tight junctions in the Caco-2 cell monolayer. Immunofluorescence localization of occludin and ZO-1 showed disruption of the tight junctions in acetaldehyde-treated cell monolayer. Administration of genistein prevented acetaldehyde-induced permeability. Acetaldehyde increased tyrosine phosphorylation of three clusters of proteins with molecular masses of 30-50, 60-90, and 110-150 kDa; three of these proteins were ZO-1, E-cadherin, and beta-catenin. Acetaldehyde reduced PTPase activity in plasma membrane and soluble fractions, whereas tyrosine kinase activity remained unaffected. Treatment with acetaldehyde resulted in a 97% loss of protein tyrosine phosphatase (PTP)1B activity and a partial reduction of PTP1C and PTP1D activities. These results strongly suggest that acetaldehyde inhibits PTPases to increase protein tyrosine phosphorylation, which may result in disruption of the tight junctions.  相似文献   

18.
The protein tyrosine phosphatase-1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) have been implicated in down-regulation of tyrosine kinase receptors, conferring anti-oncogenic functions to these PTPases. However, recent work has shown that PTP1B is positively implicated in oncogenic properties of breast cancer cells by regulating the ERK pathway. Here, we studied the function of PTP1B and TC-PTP in IGF-2-induced growth, survival and migration of MCF-7 breast cancer cells. Using siRNA, we showed that reduction in the expression of these PTPases decreased cell growth and ERK phosphorylation. Reduction in the expression of these PTPases did not impair IGF-2 effects on cell survival to acute treatment with 4-OH Tamoxifen. In contrast, IGF-2-induced MCF-7 cell migration was markedly impaired by reduction of PTP1B or TC-PTP expression, independently of the ERK pathway. This novel finding reinforces the potential role of these PTPases as therapeutic targets for treatment of breast cancer.  相似文献   

19.
A series of copper complexes with multi-benzimidazole derivatives, including mono- and di-nuclear, were synthesized and characterized by Fourier transform IR spectroscopy, UV–Vis spectroscopy, elemental analysis, electrospray ionization mass spectrometry. The speciation of Cu/NTB in aqueous solution was investigated by potentiometric pH titrations. Their inhibitory effects against human protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2), srchomology phosphatase 1 (SHP-1) and srchomology phosphatase 2 (SHP-2) were evaluated in vitro. The five copper complexes exhibit potent inhibition against PTP1B, TCPTP and PTP-MEG2 with almost same inhibitory effects with IC50 at submicro molar level and about tenfold weaker inhibition versus SHP-1, but almost no inhibition against SHP-2. Kinetic analysis indicates that they are reversible competitive inhibitors of PTP1B. Fluorescence study on the interaction between PTP1B and complex 2 or 4 suggests that the complexes bind to PTP1B with the formation of a 1:1 complex. The binding constant are about 1.14 × 106 and 1.87 × 106 M−1 at 310 K for 2 and 4, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号