首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water samples were collected from three sites located in the middle reach of the Njoro River, Kenya, and analysed for total phosphorus (TP), orthophosphate, ammonia‐nitrogen, and nitrate‐nitrogen to evaluate stressor sources (e.g. factories and wastewater ponds) and the general stream water quality. The stream surface water was also analysed for biochemical oxygen demand (BOD5) to provide an overview of organic matter loading. Mugo, Egerton Bridge and the canning factory sites of the Njoro River had low water quality which is likely to be due to poor farming, partially treated effluents and poor provision of sanitation facilities to the riparian communities. The concentrations of the selected nutrients did not differ significantly among the three sites, presumably due to pollution of the whole stream reach by the catchment nutrient sources. High phosphate concentrations (i.e. ~0.76 mgPO4 l?1 and ~0.87 mgTP l?1) at Canning Factory were recorded during the low flow dry season. Nitrate‐nitrogen concentrations varied significantly with water discharge which explained between 63 and 87% of the nutrient variability in the three sites. BOD5 differed significantly among the three sites, with historical effects of wastewater and factory effluent discharge being reflected in the results of Egerton Bridge and Canning Factory. The concentrations of ammonia‐nitrogen, TP and orthophosphate were higher in the wastewater than in the river water whereas nitrate‐nitrogen was lower. This study indicates that the Njoro River is stressed by nutrients from the activities within its catchment. With the increasing population, the nutrient load to the river will continue to increase and the water quality will continue to deteriorate. Reductions of nutrient loads into the river as well as provision of sanitation facilities to the riparian communities are needed to control further water degradation.  相似文献   

2.
Although nutrient enrichment frequently decreases biodiversity, it remains unclear whether such biodiversity losses are readily reversible, or are critical transitions between alternative low‐ and high‐diversity stable states that could be difficult to reverse. Our 30‐year grassland experiment shows that plant diversity decreased well below control levels after 10 years of chronic high rates (95–270 kg N ha−1 year−1) of nitrogen addition, and did not recover to control levels 20 years after nitrogen addition ceased. Furthermore, we found a hysteretic response of plant diversity to increases and subsequent decreases in soil nitrate concentrations. Our results suggest that chronic nutrient enrichment created an alternative low‐diversity state that persisted despite decreases in soil nitrate after cessation of nitrogen addition, and despite supply of propagules from nearby high‐diversity plots. Thus, the regime shifts between alternative stable states that have been reported for some nutrient‐enriched aquatic ecosystems may also occur in grasslands.  相似文献   

3.
Ammonium and nitrate are important sources of inorganic nitrogen for coastal primary producers. Nitrate has higher energy requirement for uptake and assimilation, compared with ammonium, suggesting that it might be a more efficient nitrogen source for slow‐growing, light‐limited macroalgae. To address this hypothesis, we examined the nitrogen ecophysiology of Anotrichium crinitum, a rhodophyte macroalgae common in low‐light habitats in New Zealand. We measured seasonal changes in seawater nitrate and ammonium concentrations and the concentration of nitrate and ammonium stored internally by A. crinitum. We determined the maximal uptake rates of nitrate and ammonium seasonally and grew A. crinitum in the laboratory with these nitrogen sources under two ecologically relevant saturating light levels. Our results show that field‐harvested A. crinitum has a high affinity for ammonium and although it will grow when supplied exclusively with nitrate, internal nitrate pools are low and it is unable to take up nitrate without several days of acclimation to saturating light. Our data predict that A. crinitum would be able to sustain growth with ammonium as the sole source of nitrogen, a strategy that would help it survive under low‐light conditions that prevail in the field.  相似文献   

4.
The effect of inorganic nitrogen source on population growth of Euglena mutabilis, an acidophillic benthic protozoa colonizing on the sediment of acid mine drainage, was investigated. Sodium nitrate, ammonium chloride, and ammonium sulfate were tested as nitrogen sources. The population density of E. mutabilis at equilibrium density cultivated in ammonium chloride‐ and ammonium sulfate‐containing media was 9–11 times higher than that in sodium nitrate‐containing medium at the optimal salt medium concentration. The population growth of E. mutabilis in ammonium sulfate‐containing medium was rapid and reached half of the equilibrium density after ca. 228 h, which was ca. 77 h earlier than that in ammonium chloride‐containing medium. Culture medium with ammonium sulfate as the nitrogen source achieved the highest maximum population density and the fastest growth rate among the three nitrogen salts used as nitrogen sources.  相似文献   

5.
单细胞微藻在生长发育过程中,所积累的中性脂肪具有潜在的生物燃料价值。不同氮源对藻类的生长具有显著影响。研究了氨态氮、尿素氮和硝酸态氮对蛋白核小球藻生长、色素和中性脂肪积累的影响。结果显示,不同氮源对培养液pH有显著影响,以氨态氮为氮源导致培养液pH降低,而硝酸态氮导致培养液pH升高,培养液pH的波动可被添加的Hepes所稳定,并促进以氨态氮为氮源的蛋白核小球藻的生长。尿素氮对蛋白核小球藻生长、色素积累的效果优于氨态氮和硝酸态氮,硝酸态氮在中性脂肪积累上优于尿素氮和氨态氮,添加Hepes对氮饥饿后蛋白核小球藻的中性脂肪积累无显著影响。  相似文献   

6.
A water quality study was carried out on ground water wells, which serve as drinking water sources in farming communities in Al-Mahareth village of Assir region of the Kingdom of Saudi Arabia. The objective of this research was to determine concentrations of different forms of nitrogen in drinking water samples. Water samples were collected from these sources every 3 months (from January to December 2008) and analyzed for ammonia, nitrate and nitrite using the Plaintest Photometer Method. Results indicated that the annual mean concentration of nitrate, nitrite and ammonia varied from 23.09 to 25.06 mg/l, 0.006 to 0.36 mg/l and 0.008 to 0.179 mg/l, respectively. An important observation was that, in general, higher nitrate and nitrite concentrations were found during the rainy season compared to the dry season. Concentrations of these potentially toxic substances were below WHO acceptable limits for surface and ground waters, indicating that these water resources appear safe for drinking from a dissolved nitrogen perspective.  相似文献   

7.
8.
Plants can assimilate nitrogen from soil pools of both ammonium and nitrate, and the relative levels of these two nitrogen sources are highly variable in soil. Long‐term ammonium nutrition is known to cause damage to Arabidopsis that has been linked to mitochondrial oxidative stress. Using hydroponic cultures, we analysed the consequences of rapid shifts between nitrate and ammonium nutrition. This did not induce growth retardation, showing that Arabidopsis can compensate for the changes in redox metabolism associated with the variations in nitrogen redox status. During the first 3 h of ammonium treatment, we observed distinct transient shifts in reactive oxygen species (ROS), low‐mass antioxidants, ROS‐scavenging enzymes, and mitochondrial alternative electron transport pathways, indicating rapid but temporally separated changes in chloroplastic, mitochondrial and cytosolic ROS metabolism. The fast induction of antioxidant defences significantly lowered intracellular H2O2 levels, and thus protected Arabidopsis leaves from oxidative stress. On the other hand elevated extracellular ROS production in response to ammonium supply may be involved in signalling. The response pattern displays an intricate plasticity of Arabidopsis redox metabolism to minimise stress in responses to nutrient changes.  相似文献   

9.
Spirulina platensis was cultivated, in comparative studies, using several sources of nitrogen. The standard source used (sodium nitrate) was the same as that used in the synthetic medium Zarrouk, whereas the alternative nitrogen sources consisted of ammonium nitrate, urea, ammonium chloride, ammonium sulphate or acid ammonium phosphate. The initial nitrogen concentrations tested were 0.01, 0.03 and 0.05 M in an aerated photobioreactor at 30 °C, with an illuminance of 1900 lux, and 12 h-light/12 h-dark photoperiod over a period of 672 h. Maximum biomass was produced in medium containing sodium nitrate (0.01–0.03–0.05 M), followed by ammonium nitrate (0.01 M) and urea (0.01 M). The final biomass concentrations were 1.992 g l–1 (0.03 M sodium nitrate), 1.628 g l–1 (0.05 M sodium nitrate), 1.559 g l–1 (0.01 M sodium nitrate), 0.993 g l–1 (0.01 M ammonium nitrate) and 0.910 g l–1 (0.01 M urea). This suggested that it is possible to utilize nitrogen sources other than sodium nitrate for growing S. platensis, in order to decrease the production costs of scaled up projects.  相似文献   

10.
A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Coleccion Espanola de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344. Cyanide consumption is an assimilative process, since (i) bacterial growth was concomitant and proportional to cyanide degradation and (ii) the bacterium stoichiometrically converted cyanide into ammonium in the presence of l-methionine-d,l-sulfoximine, a glutamine synthetase inhibitor. The bacterium was able to grow in alkaline media, up to an initial pH of 11.5, and tolerated free cyanide in concentrations of up to 30 mM, which makes it a good candidate for the biological treatment of cyanide-contaminated residues. Both acetate and d,l-malate were suitable carbon sources for cyanotrophic growth, but no growth was detected in media with cyanide as the sole carbon source. In addition to cyanide, P. pseudoalcaligenes CECT5344 used other nitrogen sources, namely ammonium, nitrate, cyanate, cyanoacetamide, nitroferricyanide (nitroprusside), and a variety of cyanide-metal complexes. Cyanide and ammonium were assimilated simultaneously, whereas cyanide strongly inhibited nitrate and nitrite assimilation. Cyanase activity was induced during growth with cyanide or cyanate, but not with ammonium or nitrate as the nitrogen source. This result suggests that cyanate could be an intermediate in the cyanide degradation pathway, but alternative routes cannot be excluded.  相似文献   

11.
W. Jessup  M. W. Fowler 《Planta》1976,132(2):119-123
Summary The effect of the nature and concentration of the nitrogen source on respiratory activity and removal of carbohydrate from the medium in suspension cultured sycamore (Acer pseudoplatanus L.) cells was determined. Comparison was also made of the rates of uptake of the two alternative nitrogen sources, nitrate and glutamate, at differing initial nitrogen concentrations within the range 7–14 mM. The initial pH of the culture medium before inoculation was 5.2; after inoculation the pH of both nitrate and glutamate cultures rose to reach an eventual level in the range 7.0–7.1. Glutamate was removed from the medium more slowly than nitrate. Under the particular conditions of culture used the growth of the cells was nitrogen limited. Sugar uptake from the medium continued for some time after the nitrogen in the medium was depleted. The data show that although cell division and protein content are nitrogen-limited, dry weight and fresh weight yields may also be determined in a complex interaction through carbohydrate availability. There were no obvious differences in respiratory activity between cultures grown on nitrate or glutamate.  相似文献   

12.
农田土壤硝酸盐积累与淋失研究进展   总被引:88,自引:7,他引:88  
农田土壤硝酸盐淋失是导致地下水硝酸盐污染的主要原因。影响农田土壤中硝酸盐积累的淋失的因素很多。主要有施肥、降水、灌溉、土壤性质以及耕种制度等,过量施用氮肥,不论是单独施用无机肥、有机肥还是有机、无机混施都能造成硝酸盐在土体中大量积累;耕作和种植制度均能影响硝酸盐在土体中的积累和迁移;降水和灌溉带来的下渗水流是累积在土壤中的硝酸盐向下迁移直至淋失的必要条件,也是运载工具,而土壤中的大孔隙则是下渗水流的主要通道,农田土壤硝酸盐的积累与淋失是多种因素综合作用的结果,模型是研究和预测硝酸盐淋失的理想工具,近年来发展很快,并且得到了很好的应用。  相似文献   

13.
1. The sources of nitrogen for phytoplankton were determined for a bloom‐prone lake as a means of assessing the hypothesis that cyanobacteria dominate in eutrophic lakes because of their ability to fix nitrogen when the nitrogen : phosphorous (N : P) supply ratio is low and nitrogen a limiting resource. 2. Nitrogen fixation rates, estimated through acetylene reduction with 15N calibration, were compared with 15N‐tracer estimates of ammonium and nitrate uptake monthly during the ice‐free season of 1999. In addition, the natural N stable isotope composition of phytoplankton, nitrate and ammonium were measured biweekly and the contribution of N2 to the phytoplankton signature estimated with a mixing model. 3. Although cyanobacteria made up 81–98% of phytoplankton biomass during summer and autumn, both assays suggested minimal N acquisition through fixation (<9% for the in‐situ incubations; <2% for stable isotope analysis). Phytoplankton acquired N primarily as ammonium (82–98%), and secondarily as nitrate (15–18% in spring and autumn, but <5% in summer). Heterocyst densities of <3 per 100 fixer cells confirmed low reliance on fixation. 4. The lake showed symptoms of both light and nitrogen limitation. Cyanobacteria may have dominated by monopolizing benthic sources of ammonium, or by forming surface scums that shaded other algae.  相似文献   

14.
白葡萄酒活性干酵母对不同氮源利用的研究   总被引:1,自引:0,他引:1  
选用5种不同的白葡萄酒活性干酵母,以硫酸铵、氯化铵、硝酸铵、尿素、酵母粉等5种物质为氮源,观察其生长量并称量菌体重,以此分析其对氮源利用情况及不同氮源对酵母生长的影响。研究表明:供试菌系在不同氮源中均能生长。不同氮源对酵母的生长速度和生长量有不同影响;不同酵母菌种对不同氮源的利用也有差异。在以酵母粉为氮源的培养基中生长最好。在实验提供的氮源中,酵母粉为供试菌最优氮源,其次是硫酸铵,氯化铵与硫酸铵基本相当,而硝酸铵最差。8#菌种对各种氮源的利用能力相对较强。17#菌种对各种氮源的利用能力最弱。  相似文献   

15.
The availability and composition of dissolved nitrogen in ocean waters are factors that influence species composition in natural phytoplankton communities. The same factors affect the ratio of organic to inorganic carbon incorporation in calcifying species, such as the coccolithophore Emiliania huxleyi (Lohman) W. W. Hay et H. Mohler. E. huxleyi has been shown to thrive on various nitrogen sources, including dissolved organic nitrogen. Nevertheless, assimilation of dissolved nitrogen under nitrogen‐replete and ‐limited conditions is not well understood in this ecologically important species. In this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic as well as organic nitrogen sources indicated reduced expression levels of nitrate reductase when cells were grown on NH4+ and a reduced expression level of the putative formamidase when growth was on NO3?. The data reported here suggest the presence of a nitrogen preference hierarchy in E. huxleyi. In addition, the gene encoding for a phosphate repressible phosphate permease was more highly expressed in cells growing on formamide than in cells growing on inorganic nitrogen sources. This finding suggests a coupling between phosphate and nitrogen metabolism, which might give this species a competitive advantage in nutrient‐depleted environments. The potential of using expression of genes investigated here as indicators of specific nitrogen‐metabolism strategies of E. huxleyi in natural populations of phytoplankton is discussed.  相似文献   

16.
17.
18.
The concentration of both nitrate and ammonium nitrogen was measured in soil taken from an upland acidic (pH 4.5) grassland habitat, containing four co-existing species, Deschampsia flexuosa (L.) Trin., Festuca ovina L., Juncus squarrosus L. and Nardus stricta L. Both nitrate and ammonium nitrogen were found to be present in the soil, in similarly small quantities. The effect of both sources of nitrogen on relative growth rate was studied, and an attempt was made to determine whether nitrate or ammonium nitrogen is the immediate source of nitrogen for these plants using assays of nitrate reductase (EC 1.6.6.2) and ammonium uptake. All four species showed larger growth rates on the same concentration of ammonium nitrogen compared to nitrate nitrogen. All species showed low activities of leaf nitrate reductase, even in plants grown on 18 mol nitrate m−3. Ammonium uptake activity appeared to be higher in species which showed the lowest nitrate reductase activity and least response to increasing nitrate concentration in the growth medium.  相似文献   

19.
Arthrospira platensis is widely cultivated in open ponds for industrial purposes. However, high‐protein A. platensis biomass produced in photobioreactors (PBRs) is recommended for pharmaceutical and cosmetic formulations. A. platensis was cultivated in a 3.5 L tubular airlift PBR using both sodium nitrate and urea as nitrogen sources. Sodium nitrate was added from the start of the cultivation using a batch process. Urea was supplied daily at exponentially increasing feeding rate using a fed‐batch process. The simultaneous optimization of the independent variables, namely, total quantity of sodium nitrate (mT1) and total quantity of urea (mT2), led to an optimal condition of mT1 = 15.0 mmol/L and mT2 = 7.5 mmol/L. Maximum biomass concentration (5183 ± 94 mg/L) corresponding to the highest biomass productivity (683 ± 13 mg/L/day) was obtained under such condition. The addition protocol of both nitrogen sources resulted in high productivities of protein (6.2 ± 0.4 mg/L/day) as well as chlorophyll‐a (372.2 ± 7.7 mg/L/day). Such innovative process could be applied in the large‐scale production of A. platensis using tubular PBR for novel applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号