首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract This study investigates the effect of some components of the Staphylococcus aureus cell wall [lipoteichoic acid (LTA), N -acetyl-muramyl-alanyl- d -isoglutamine (MD), muramic acid (MA) and protein A (PA)] in modulating expression of cell-surface adhesion molecules CD11a/CD18, CD11b/CD18 on monocytes qualitatively and quantitatively. Monocytes incubated with bacterial components presented different CD11b/CD18 expressions which were dose-dependent in contrast to controls. The results obtained demonstrated that lymphocytes incubated with bacterial components also increased the expression of CD11a/CD18. The modifications in activation of CD11a/CD18 and CD11b/CD18 expression are probably correlated with modifications of membrane fluidity measured as polarisation fluorescence (P).  相似文献   

2.
The role of beta2-integrins CD11b/CD18 and CD 11c/CD 18 in adhesion and migration of leukocytes on fibrinogen was studied. The monoclonal antibodies against CD11b inhibited the spontaneous adhesion of monocytic THP-1 cells on fibrinogen, whereas antibodies to CD11c more effectively inhibited the adhesion stimulated by chemokine MCP-1. By the RNA-interference method the clones of THP-1 with reduced expression of CD11b and general beta2-subunit CD18 were obtained. MCP-I stimulated the adhesion to fibrinogen of THP-1 cells of wild-type and mutant cells with reduced expression of CD11b (THP-1-CD11b-low), but not of cells with low expression of CD18 (THP-1-CD18-low). THP-1-CD18-low cells were also characterized by the impaired chemotaxis in presence of MCP-1. The data obtained suggest that spontaneous cell adhesion to fibrinogen is mediated to a greater extent by CD11b/CD18 integrins, while chemokine-stimulated adhesion and migration is mostly dependent on CD11c/CD18 molecules.  相似文献   

3.
Two apparently contradictory observations have been made concerning peripheral T cell tolerance; costimulation-deficient Ag presentation leads to unresponsiveness, and CTLA4 (CD152) ligation is required for unresponsiveness to be induced. This issue was addressed using a CD80- CD86low B cell line to present Ag to DO.11.10 naive CD4+ T cells. Proliferation was substantially enhanced by anti-CD80 or anti-CD152, but was inhibited by anti-CD86. Furthermore, anti-CD80 partially, and anti-CD152 totally protected cloned DO.11.10 T cells from the induction of unresponsiveness following culture with peptide and Chinese hamster ovary H2-Ad+ CD80- CD86- cells. Fab of anti-CD80 caused similar enhancement, and coimmobilized anti-CD80 failed to costimulate the anti-CD3 response of purified T cells, indicating that direct signaling by anti-CD80 was not responsible for these effects. The possibility that anti-CD80 liberated CD28 molecules that were sequestered by the T cell-expressed CD80, enabling them to coaggregate with TCR:CD3 complexes was excluded by finding that anti-CD80 and anti-CD152 individually caused maximal enhancement, rather than having additive effects. These data suggest that T cell-expressed CD80 has a regulatory function and plays a key role in the induction of unresponsiveness due to costimulation-deficient Ag presentation by the ligation of CD152 on neighboring, or even the same, T cell.  相似文献   

4.
The CD80/86-CD28 and CD40-CD40 ligand costimulatory pathways are essential for Th cell-dependent B cell responses that generate high-affinity, class-switched Ab in vivo. Disruption of either costimulatory pathway results in defective in vivo humoral immune responses, but it remains unclear to what extent this is due to deficient activation of Th cells and/or of B cells. To address this issue, we generated mixed chimeras in which CD80/86- or CD40-deficient bone marrow-derived cells coexist with wild-type (WT) cells, thereby providing the functional T cell help and accessory cell functions required for fully competent B cell responses. We were then able to assess the requirement for CD80/86 or CD40 expression on B cells producing class-switched Ig in response to a T-dependent Ag. In CD80/86 WT plus CD80/86 double-knockout mixed chimeras, both WT- and CD80/86-deficient B cells produced IgG1 and IgE responses, indicating that direct signaling by CD80/86 is not essential for efficient B cell activation. In marked contrast, only WT IgG1 and IgE responses were detected in the chimeras containing CD40-deficient cells, demonstrating that CD40 expression on B cells is essential for class switching by those B cells. Thus, while disrupting either the CD80/86-CD28 or the CD40-CD40 ligand costimulatory pathway abrogates T-dependent B cell immune responses, the two pathways are nonredundant and mediated by distinct mechanisms.  相似文献   

5.
CD80 and CD86 both costimulate T cell activation. Their individual effects in vivo are difficult to study as they are coordinately up-regulated on APCs. We have studied mice expressing rat insulin promoter (RIP)-CD80 and RIP-CD86 on the NOD and NOD.scid genetic background to generate in vivo models, using diabetes as a readout for cytotoxic T cell activation. Accelerated spontaneous diabetes onset was observed in NOD-RIP-CD80 mice and the transfer of diabetes from 6-wk-old NOD mice to NOD.scid-RIP-CD80 mice was greater compared with NOD-RIP-CD86 and NOD.scid-RIP-CD86 mice, respectively. However, the secondary in vivo response was maintained if T cells were activated through CD86 costimulation compared with CD80. This was demonstrated by greater ability to cause recurrent diabetes in NOD-RIP-CD86 diabetic mice transplanted with 6-wk-old NOD islets and adoptively transferred diabetes from diabetic NOD-RIP-CD86 mice to NOD.scid mice. In vitro, CD80 costimulation enhanced cytotoxicity, proliferation, and cytokine secretion in activated CD8 T cells compared with CD86 costimulation. We demonstrated increased CTLA-4 and programmed death-1 inhibitory molecule expression following costimulation by both CD80 and CD86 (CD80 > CD86). Furthermore, T cells stimulated by CD80 were more susceptible to inhibition by CD4(+)CD25(+) T cells. Overall, while CD86 does not stimulate an initial response as strongly as CD80, there is greater sustained activity that is seen even in the absence of continued costimulation. These functions have implications for the engineered use of costimulatory molecules in altering immune responses in a therapeutic setting.  相似文献   

6.
Effective activation of T cells requires engagement of two separate T-cell receptors. The antigen-specific T-cell receptor (TCR) binds foreign peptide antigen-MHC complexes, and the CD28 receptor binds to the B7 (CD80/CD86) costimulatory molecules expressed on the surface of antigen-presenting cells (APC). The simultaneous triggering of these T-cell surface receptors with their specific ligands results in an activation of this cell. In contrast, CTLA-4 (CD152) is a distinct T-cell receptor that, upon binding to B7 molecules, sends an inhibitory signal to T cell activation. Many in vitro and in vivo studies demonstrated that both CD80 and CD86 ligands have an identical role in the activation of T cells. Recently, functions of B7 costimulatory molecules in vivo have been investigated in B7-1 and/or B7-2 knockout mice, and the authors concluded that CD86 could be more important for initiating T-cell responses, while CD80 could be more significant for maintaining these immune responses. In this study, we directly compared the role of CD80 and CD86 in initiating and maintaining proliferation of resting CD4(+) T cells in an in vitro mode system that allowed to provide the first signal-to-effector cells through the use of suboptimal doses of PHA and the second costimulatory signal through cells expressing CD80 or CD86, but not any other costimulatory molecules. Using this experimental system we demonstrate that the CD80 and CD86 molecules can substitute for each other in the initial activation of resting CD4(+) T cells and in the maintenance of their proliferative response.  相似文献   

7.
Dendritic cells (DCs) require costimulatory molecules such as CD86 to efficiently activate T cells for the induction of adaptive immunity. DCs maintain minimal levels of CD86 expression at rest, but upregulate levels upon LPS stimulation. LPS-stimulated DCs produce the immune suppressive cytokine IL-10 that acts in an autocrine manner to regulate CD86 levels. Interestingly, the underlying molecular mechanism behind the tight control of CD86 is not completely understood. In this study, we report that CD86 is ubiquitinated in DCs via MARCH1 E3 ubiquitin ligase and that this ubiquitination plays a key role in CD86 regulation. Ubiquitination at lysine 267 played the most critical role for this regulation. CD86 is ubiquitinated in MARCH1-deficient DCs to a much lesser degree than in wild-type DCs, which also correlated with a significant increase in CD86 expression. Importantly, CD86 is continuously ubiquitinated in DCs following activation by LPS, and this was due to the autocrine IL-10 inhibition of MARCH1 downregulation. Accordingly, DCs lacking MARCH1 and DCs expressing ubiquitination-resistant mutant CD86 both failed to regulate CD86 in response to autocrine IL-10. DCs expressing ubiquitination-resistant mutant CD86 failed to control their T cell-activating abilities at rest as well as in response to autocrine IL-10. These studies suggest that ubiquitination serves as an important mechanism by which DCs control CD86 expression and regulate their Ag-presenting functions.  相似文献   

8.
Depletion of B cells in rheumatoid arthritis is therapeutically efficacious. Yet, the mechanism by which B cells participate in the inflammatory process is unclear. We previously demonstrated that Ag-specific B cells have two important functions in the development of arthritis in a murine model of rheumatoid arthritis, proteoglycan (PG)-induced arthritis (PGIA). PG-specific B cells function as autoantibody-producing cells and as APCs that activate PG-specific T cells. Moreover, the costimulatory molecule CD86 is up-regulated on PG-specific B cells in response to stimulation with PG. To address the requirement for CD80/CD86 expression on B cells in the development of PGIA, we generated mixed bone marrow chimeras in which CD80/CD86 is specifically deleted on B cells and not on other APC populations. Chimeras with a specific deficiency in CD80/CD86 expression on B cells are resistant to the induction of PGIA. The concentration of PG-specific autoantibody is similar in mice sufficient or deficient for CD80/86-expressing B cells, which indicates that resistance to PGIA is not due to the suppression of PG-specific autoantibody production. CD80/86-deficient B cells failed to effectively activate PG-specific autoreactive T cells as indicated by the failure of T cells from PG-immunized CD80/86-deficient B cell chimeras to transfer arthritis into SCID mice. In vitro secondary recall responses to PG are also dependent on CD80/86-expressing B cells. These results demonstrate that a CD80/86:CD28 costimulatory interaction between B cells and T cells is required for autoreactive T cell activation and the induction of arthritis but not for B cell autoantibody production.  相似文献   

9.
Pancreatic islet endothelial cells (ECs) form the barrier across which autoreactive T cells transmigrate during the development of islet inflammation in type 1 diabetes. Little is known about the immune phenotype of islet ECs that might shape their molecular interaction with autoreactive T cells before and during the development of islet inflammation. In this study we examined the expression and functional significance of costimulatory molecules by human islet ECs. Freshly isolated human islet ECs constitutively expressed CD86 (B7-2) and ICOS ligand but not CD80 (B7-1) or CD40 costimulatory molecules. The functional activity of islet EC-expressed CD86 was examined by coculture of resting islet ECs with CD4 T cells stimulated by CD3 ligation alone. Marked T cell proliferation in the coculture was completely abrogated by mAb blockade of CD86, confirming that costimulatory properties are conferred on ECs by CD86 expression. In view of its location on the vasculature, we hypothesized a role for CD86 in T cell adhesion/transmigration. In keeping with this, adhesion/transmigration of activated (CD3 ligated) memory (CD45R0(+)) CD4 T cells across islet ECs was completely inhibited in the presence of CD86 blocking mAb. Identical results were obtained for T cell adhesion using either CTLA-4 blocking mAb or CTLA-4Ig (abatacept), indicating CTLA-4 as the T cell ligand for these CD86-mediated effects. These data suggest a novel role for CD86 expression on the microvasculature, whereby ligation of CTLA-4 on CD4 T cells by CD86 on islet ECs is key to the adhesion of recently activated T cells.  相似文献   

10.
11.
The inducible costimulator (ICOS) is the newest member of the CD28/CD152 receptor family involved in regulating T cell activation. We constructed a soluble-Ig fusion protein of the extracellular domain of human ICOS and used it as a probe to characterize expression patterns of the ICOS ligand (ICOSL). ICOSIg did not bind to CD80- or CD86-transfected Chinese hamster ovary cell lines, demonstrating that ICOSL is distinct from those ligands identified for CD28/CD152. ICOSIg showed selective binding to monocytic and B cell lines, whereas binding was undetectable on unstimulated monocytes and peripheral blood T and B cells. Expression of ICOSL was induced on monocytes after integrin-dependent plastic adhesion. Pretreatment of monocytes with mAb to the beta2-integrin subunit CD18 decreased adhesion and abolished ICOSL up-regulation but had no effect on CD80/86 (CD152 ligand (CD152L)) expression. Both ICOSL and CD152L were up-regulated on monocytes by IFN-gamma but by distinct signaling pathways. Unlike CD152L expression, ICOSL expression did not change when monocytes were differentiated into dendritic cells (DCs) or after DCs were induced to mature by LPS, TNF-alpha, or CD40 ligation. Addition of ICOSIg to allogeneic MLRs between DCs and T cells reduced T cell proliferative responses but did so less efficiently than CTLA4Ig (CD152Ig) did. Similarly, ICOSIg also blocked Ag-specific T cell proliferation to tetanus toxoid. Thus, ICOSL, like CD80/86, is expressed on activated monocytes and dendritic cells but is regulated differently and delivers distinct signals to T cells that can be specifically inhibited by ICOSIg.  相似文献   

12.
The use of mAbs to abrogate costimulatory interactions has attracted much attention with regard to prevention and modulation of adverse (auto)immune-like reactions. However, the role of costimulatory molecules and possible therapeutic use of Ab-treatment in drug-induced immunostimulation is poorly elucidated. In the present studies, we show that CD28/CTLA-4-CD80/CD86 costimulatory interactions differently regulate drug-induced type 1 and type 2 responses to an identical bystander Ag, TNP-OVA, in BALB/c mice using the reporter Ag popliteal lymph node assay. The antirheumatic drug D-Penicillamine, which may induce lupus-like side-effects, stimulated type 2 responses against TNP-OVA, characterized by the production of IL-4 and TNP-specific IgG1 and IgE. These responses were abrogated in CD80/CD86-deficient mice and in wild-type mice that were treated with anti-CD80 and anti-CD86, or CTLA-4-Ig. Anti-CTLA-4 intensively enhanced the D-Penicillamine-induced effects. In contrast, the type 1 response (IFN-gamma, TNF-alpha, IgG2a) to TNP-OVA induced by the diabetogen streptozotocin still developed in the absence of CD80/CD86 costimulatory signaling. In addition, it was demonstrated that coadministration of anti-CD80 and anti-CD86 mAbs slightly enhanced streptozotocin-induced type 1 responses, whereas the CTLA-4-Ig fusion protein completely abrogated this response. In conclusion, different drugs may stimulate distinct types of immune responses against an identical bystander Ag, which are completely dependent on (type 2) or independent of (type 1) the CD28/CTLA-4-CD80/CD86 pathway. Importantly, the effects of treatment with anti-CD80/CD86 mAbs and CTLA-4-Ig may be considerably different in responses induced by distinct drugs.  相似文献   

13.
Hantaviruses cause two important human illnesses, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Both syndromes are believed to be immune-mediated diseases. Monocytes/macrophages are thought to be the main target cells for hantaviruses and important sources of and targets for cytokines/chemokines secretion. THP-1 cells have been used extensively as models for primary monocytes in biocompatibility research. The aim of our study was to determine if hantaviruses induce the same immunoreactions in THP-1 cells and primary monocytes/ macrophages and might therefore be suitable for immune studies of hantaviral infections. For that purpose we compared various cytokines/chemokines and their receptors in THP-1 cell line and primary monocytes/macrophages. Infected primary monocytes/macrophages induced mostly beta-chemokines and their receptors. In contrast, THP-1 cells, expressed receptors for CXC chemokines. Surprisingly, infected macrophages underwent morphological changes toward dendritic-like cells and increased expression of co-stimulatory molecules: CD40, CD80, CD83 and CD86. Our data indicate that THP-1 cells are not ideal for in vitro research of the immunopathogenesis of hantaviruses in humans. Further, our studies revealed potential roles for cytokines/chemokines in HFRS/HPS immunopathogenesis and point to intriguing possibilities for the possible differentiation of infected macrophages to dendritic-like cells.  相似文献   

14.
In this study, the stimulatory effects of different lactic acid bacteria strains, and their subcellular fractions, on the THP-1 cell line were evaluated. Lactobacillus plantarum was found in particular to induce high levels of IL-23p19 mRNA, but it moderately induced TNF-alpha production. IL-10 production was not entirely affected by L. plantarum stimulation. When subcellular fractions of L. plantarum were used to treat THP-1 cells, IL-23p19 mRNA expression was enhanced in a dose-responsive manner, specifically by lipoteichoic acid (LTA). The cotreatment of THP-1 cells by both L. plantarum and Staphylococcus aureus LTA resulted in decreased IL-10 production when compared with cells treated by S. aureus LTA alone. Taken together, these data suggest that LTA isolated from L. plantarum elicits stimulatory effects upon the expression of IL-23p19 and inhibitory effects on pathogen-mediated IL-10 production.  相似文献   

15.
Inflammatory response plays an important role in ischaemia reperfusion injury (IRI) through a variety of inflammatory cells. Apart from neutrophils, macrophages and lymphocytes, the role of dendritic cells (DCs) in IRI has been noticed. The study was aimed at investigating whether the high‐mobility group protein box‐1/toll like receptor 4 (HMGB1/TLR4) signalling pathway regulate the migration, adhesion and aggregation of DCs to the myocardium, induce DCs activation and maturation, stimulate the expression of surface costimulatory molecules and participate in myocardial IRI. In vivo, migration, adhesion, and aggregation of DCs was enhanced; the expression of peripheral blood DCs CD80 and CD86, myocardial adhesion molecules were increased; and the infarct size was increased during myocardial ischaemia reperfusion injury myocardial ischemic/reperfusion injury (MI/RI). These responses induced by MI/RI were significantly inhibited by HMGB1 specific neutralizing antibody treatment. Cellular experiments confirmed that HMGB1 promoted the release of inflammatory cytokines through TLR4/MyD88/NF‐κB, upregulated CD80 and CD86 expression, mediated the damage of cardiomyocytes and accelerated the apoptosis. Our results indicate that DCs activation and maturation, stimulate the expression of surface costimulatory molecules by promoting the release of inflammatory factors through NF‐κB pathway and participate in myocardial IRI.  相似文献   

16.
CD28 and CTLA-4 (CD152) play a pivotal role in the regulation of T cell activation. Upon ligation by CD80 (B7-1) or CD86 (B7-2), CD28 induces T cell proliferation, cytokine production, and effector functions, whereas CTLA-4 signaling inhibits expansion of activated T cells and induces tolerance. Therefore, we hypothesized that co-stimulatory molecules that preferentially bind CD28 or CTLA-4 would have dramatically altered biological properties. We describe directed molecular evolution of CD80 genes derived from human, orangutan, rhesus monkey, baboon, cat, cow, and rabbit by DNA shuffling and screening. In contrast to wild-type CD80, the evolved co-stimulatory molecules, termed CD28-binding protein (CD28BP) and CTLA-4-binding protein (CTLA-4BP), selectively bind to CD28 or CTLA-4, respectively. Furthermore, CD28BP has improved capacity to induce human T cell proliferation and interferon-gamma production compared with wild-type CD80. In contrast, CTLA-4BP inhibited human mixed leukocyte reaction (MLR) and enhanced interleukin 10 production in MLR, supporting a role for CTLA-4BP in inducing T cell anergy and tolerance. In addition, co-stimulation of purified human T cells was significantly suppressed when CTLA-4BP was cotransfected with either CD80 or CD28BP. The amino acid sequences of CD28BP and CTLA-4BP were 61 and 96% identical with that of human CD80 and provide insight into the residues that are critical in the ligand binding. These molecules provide a new approach to characterization of CD28 and CTLA-4 signals and to manipulation of the T cell response.  相似文献   

17.
The impact of BCR:CD21 co-engagement on B cell expression of molecules critical for T cell activation was investigated with receptor-specific mAbs conjugated to high MW dextran as stimulatory ligands. In the absence of IL-4, BCR:CD21 co-ligation augmented BCR-triggered CD86 only under conditions of very low BCR ligand dose or affinity, and CD80 was minimally induced by BCR and/or CD21 crosslinking. In the presence of IL-4, BCR:CD21 co-ligation augmented CD86 and CD80 expression under conditions of greater BCR engagement. However, with very high level BCR engagement, no bonus effect of BCR:CD21 crosslinking was observed. Co-ligation-promoted CD86 and CD80 expression was associated with heightened B cell activation of resting allogeneic T cells. The data suggest that co-clustering of BCR and the CD21/CD19 co-stimulatory complex following B cell engagement with C3d-bound microbial or self-antigens will enhance B cell recruitment of T cell help only when IL-4 is present and/or BCR engagement is very limiting.  相似文献   

18.
To date, not much has been known regarding the role of CD80 and CD86 molecules in signaling of B cells. The CD28/CTLA4 ligands, CD80 (B7-1) and CD86 (B7-2), are expressed on the surface of freshly isolated splenic B cells, and their expression is up-regulated by lipopolysaccharides. In the present study, we have investigated whether signaling via CD80/CD86 could alter the proliferation and immunoglobulin synthesis of B cells. Splenic B cells were stimulated with lipopolysaccharides in the presence of anti-B7-1 (16-10A1) and anti-B7-2 (GL1) monoclonal antibodies (mAbs). Exciting features observed during the study were that cross-linking of CD86 with GL1 enhanced the proliferation and production of IgG1 and IgG2a isotypes. In contrast, anti-B7-1 (16-10A1) mAb could efficiently block the proliferation and production of IgG1 and IgG2a. Furthermore, GL1 mAb could also induce the secretion of IgG isotypes from B cell lymphomas. Importantly, 16-10A1 could retard the growth of lymphomas and favored the up-regulation of pro-apoptotic molecules caspase-3, caspase-8, Fas, FasL, Bak, and Bax and down-regulation of anti-apoptotic molecule Bcl-x(L). In contrast, GL1 augmented the level of anti-apoptotic molecules Bcl-w and Bcl-x(L) and decreased the levels of pro-apoptotic molecule caspase-8, thereby providing a novel insight into the mechanism whereby triggering through CD80 and CD86 could deliver regulatory signals. Thus, this study is the first demonstration of a distinct signaling event induced by CD80 and CD86 molecules in B cell lymphoma. Finally, the significance of the finding is that CD80 provided negative signal for the proliferation and IgG secretion of normal B cells and B cell lymphomas. In contrast, CD86 encouraged the activity of B cells.  相似文献   

19.
20.
T cell upregulation of B7 molecules CD80 and CD86 limits T cell expansion in immunodeficient hosts; however, the relative roles of CD80 separate from CD86 on CD4 versus CD8 T cells in a normal immune system are not clear. To address this question, we used the parent-into-F1 (P→F1) murine model of graft-versus-host disease and transferred optimal and suboptimal doses of CD80 and/or CD86 knockout (KO) T cells into normal F1 hosts. Enhanced elimination of host B cells by KO T cells was observed only at suboptimal donor cell doses and was greatest for CD80 KO→F1 mice. Wild-type donor cells exhibited peak CD80 upregulation at day 10; CD80 KO donor cells exhibited greater peak (day 10) donor T cell proliferation and CD8 T cell effector CTL numbers versus wild-type→F1 mice. Fas or programmed cell death-1 upregulation was normal as was homeostatic contraction of CD80 KO donor cells from days 12-14. Mixing studies demonstrated that maximal host cell elimination was seen when both CD4 and CD8 T cells were CD80 deficient. These results indicate an important role for CD80 upregulation on Ag-activated CD4 and CD8 T cells in limiting expansion of CD8 CTL effectors as part of a normal immune response. Our results support further studies of therapeutic targeting of CD80 in conditions characterized by suboptimal CD8 effector responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号