首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Losonczy A  Magee JC 《Neuron》2006,50(2):291-307
Although radial oblique dendrites are a major synaptic input site in CA1 pyramidal neurons, little is known about their integrative properties. We have used multisite two-photon glutamate uncaging to deliver different spatiotemporal input patterns to single branches while simultaneously recording the uncaging-evoked excitatory postsynaptic potentials and local Ca2+ signals. Asynchronous input patterns sum linearly in spite of the spatial clustering and produce Ca2+ signals that are mediated by NMDA receptors (NMDARs). Appropriately timed and sized input patterns ( approximately 20 inputs within approximately 6 ms) produce a supralinear summation due to the initiation of a dendritic spike. The Ca2+ signals associated with synchronous input were larger and mediated by influx through both NMDARs and voltage-gated Ca2+ channels (VGCCs). The oblique spike is a fast Na+ spike whose duration is shaped by the coincident activation of NMDAR, VGCCs, and transient K+ currents. Our results suggest that individual branches can function as single integrative compartments.  相似文献   

2.
Voltage-gated calcium channels (VGCCs) convert electrical activity into calcium (Ca2+) signals that regulate cellular excitability, differentiation, and connectivity. The magnitude and kinetics of Ca2+ signals depend on the number of VGCCs at the plasma membrane, but little is known about the regulation of VGCC surface expression. We report that electrical activity causes internalization of the L-type Ca2+ channel (LTC) CaV1.2 and that this is mediated by binding to the tumor suppressor eIF3e/Int6 (eukaryotic initiation factor 3 subunit e). Using total internal reflection microscopy, we identify a population of CaV1.2 containing endosomes whose rapid trafficking is strongly regulated by Ca2+. We define a domain in the II-III loop of CaV1.2 that binds eIF3e and is essential for the activity dependence of both channel internalization and endosomal trafficking. These findings provide a mechanism for activity-dependent internalization and trafficking of CaV1.2 and provide a tantalizing link between Ca2+ homeostasis and a mammalian oncogene.  相似文献   

3.
The inner pore of voltage-gated Ca2+ channels (VGCCs) is functionally important, but little is known about the architecture of this region. In K+ channels, this part of the pore is formed by the S6/M2 transmembrane segments from four symmetrically arranged subunits. The Ca2+ channel pore, however, is formed by four asymmetric domains of the same (alpha1) subunit. Here we investigated the architecture of the inner pore of P/Q-type Ca2+ channels using the substituted-cysteine accessibility method. Many positions in the S6 segments of all four repeats of the alpha1 subunit (Ca(v)2.1) were modified by internal methanethiosulfonate ethyltrimethylammonium (MTSET). However, the pattern of modification does not fit any known sequence alignment with K+ channels. In IIS6, five consecutive positions showed clear modification, suggesting a likely aqueous crevice and a loose packing between S6 and S5 segments, a notion further supported by the observation that some S5 positions were also accessible to internal MTSET. These results indicate that the inner pore of VGCCs is indeed formed by the S6 segments but is different from that of K+ channels. Interestingly some residues in IIIS6 and IVS6 whose mutations in L-type Ca2+ channels affect the binding of dihydropyridines and phenylalkylamines and are thought to face the pore appeared not to react with internal MTSET. Probing with qBBr, a rigid thiol-reactive agent with a dimension of 12 angstroms x 10 angstroms x 6 angstroms suggests that the inner pore can open to >10 angstroms. This work provides an impetus for future studies on ion permeation, gating, and drug binding of VGCCs.  相似文献   

4.
Kochegarov AA 《Cell calcium》2003,33(3):145-162
Calcium channels (CCs) play an important role in the transduction of action potential to the cytosol. An influx of Ca(2+) is essential for muscle contraction, neurotransmitter, and hormonal release. Level of cytosolic Ca(2+) controls activities of many enzymes and regulatory proteins. Voltage-gated calcium channels (VGCCs) serve as sensors for membrane depolarization. Blood pressure reduction is due to relaxation of actomyosine filaments in vascular smooth muscles. Calcium channel blockers (CCBs) are traditionally used for treatment of cardiovascular diseases. Neurotransmitter release from presynaptic neurons is triggered by Ca(2+) influx. Blockers of neuronal CCs may be applied for pain treatment. Overload of neurons by Ca(2+) is toxic. CCBs may be applied for prevention of some neurodegenerative disorders.  相似文献   

5.
The unconventional gaseous transmitter nitric oxide (NO) markedly influences most of mechanisms involved in the regulation of intracellular Ca2+ homeostasis. In excitable cells, Ca2+ signaling mainly depends on the activity of voltage-gated Ca2+ channels (VGCCs). In the present paper, we will review data from our laboratory and others characterizing NO-induced modulation of Ca(v)1 (L-type) and Ca(v)2.2 (N-type) channels. In particular, we will explore experimental evidence indicating that NO's inhibition of channel gating is produced via cGMP-dependent protein kinase and examine some of the numerous cell functions that are potentially influenced by the action of NO on Ca2+ channels.  相似文献   

6.
Ca2+ influx into presynaptic terminals via voltage-dependent Ca2+ channels triggers fast neurotransmitter release as well as different forms of synaptic plasticity. Using electrophysiological and genetic techniques we demonstrate that presynaptic Ca2+ entry through Cav2.3 subunits contributes to the induction of mossy fiber LTP and posttetanic potentiation by brief trains of presynaptic action potentials while they do not play a role in fast synaptic transmission, paired-pulse facilitation, or frequency facilitation. This functional specialization is most likely achieved by a localization remote from the release machinery and by a Cav2.3 channel-dependent facilitation of presynaptic Ca2+ influx. Thus, the presence of Cav2.3 channels boosts the accumulation of presynaptic Ca2+ triggering presynaptic LTP and posttetanic potentiation without affecting the low release probability that is a prerequisite for the enormous plasticity displayed by mossy fiber synapses.  相似文献   

7.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

8.
Postsynaptic Ca2+ signal influences synaptic transmission through multiple mechanisms. Some of them involve retrograde messengers that are released from postsynaptic neurons in a Ca2+-dependent manner and modulate transmitter release through activation of presynaptic receptors. Recent studies have revealed essential roles of endocannabinoids in retrograde modulation of synaptic transmission. Endocannabinoid release is induced by either postsynaptic Ca2+ elevation alone or activation of postsynaptic Gq/11-coupled receptors with or without Ca2+ elevation. The former pathway is independent of phospholipase Cbeta (PLCbeta) and requires a large Ca2+ elevation to a micromolar range. The latter pathway requires PLCbeta and is facilitated by a moderate Ca2+ elevation to a submicromolar range. This facilitation is caused by Ca2+-dependency of receptor-driven PLCbeta activation. The released endocannabinoids then activate presynaptic cannabinoid receptor type 1 (CB1), and suppress transmitter release from presynaptic terminals. Both CB1 receptors and Gq/11-coupled receptors are widely distributed in the brain. Thus, the endocannabinoid-mediated retrograde modulation may be an important and widespread mechanism in the brain, by which postsynaptic events including Gq/11-coupled receptor activation and Ca2+ elevation can retrogradely influence presynaptic function.  相似文献   

9.
At an identified neuro-neuronal synapse of the buccal ganglion of Aplysia, quantal release of acetylcholine (ACh) is increased by FMRFamide and decreased by histamine or buccalin. Activation of presynaptic receptors for these neuromodulators modifies a presynaptic Ca2+ current which is nifedipine-resistant and omega-conotoxin-sensitive. The voltage-sensitivity of these N-type Ca2+ channels is increased by FMRFamide and decreased by histamine through the intermediate of G proteins. Buccalin does not implicate G proteins and reduces the Ca2+ current without affecting the voltage-sensitivity of N-type Ca2+ channels. The possibility of relating the shifts in voltage-dependence of the Ca2+ current induced by FMRFamide and histamine to the phosphorylation state of the N-type Ca2+ channels is discussed. A scheme for the complex regulation of ACh release by presynaptic auto- and heteroreceptors is proposed.  相似文献   

10.
At presynaptic active zones, neurotransmitter release is initiated by the opening of voltage-gated Ca2+ channels close to docked vesicles. The mechanisms that enrich Ca2+ channels at active zones are, however, largely unknown, possibly because of the limited presynaptic accessibility of most synapses. Here, we have established a Cre-lox based conditional knockout approach at a presynaptically accessible central nervous system synapse, the calyx of Held, to directly study the functions of RIM proteins. Removal of all RIM1/2 isoforms strongly reduced the presynaptic Ca2+ channel density, revealing a role of RIM proteins in Ca2+ channel targeting. Removal of RIMs also reduced the readily releasable pool, paralleled by a similar reduction of the number of docked vesicles, and the Ca2+ channel-vesicle coupling was decreased. Thus, RIM proteins co-ordinately regulate key functions for fast transmitter release, enabling a high presynaptic Ca2+ channel density and vesicle docking at the active zone.  相似文献   

11.
Wadel K  Neher E  Sakaba T 《Neuron》2007,53(4):563-575
In order to release neurotransmitter synchronously in response to a presynaptic action potential, synaptic vesicles must be both release competent and located close to presynaptic Ca2+ channels. It has not been shown, however, which of the two is the more decisive factor. We tested this issue at the calyx of Held synapse by combining Ca2+ uncaging and electrophysiological measurements of postsynaptic responses. After depletion of the synaptic vesicles that are responsible for synchronous release during action potentials, uniform elevation of intracellular Ca2+ by Ca2+ uncaging could still elicit rapid release. The Ca2+ sensitivity of remaining vesicles was reduced no more than 2-fold, which is insufficient to explain the slow-down of the kinetics of release (10-fold) observed during a depolarizing pulse. We conclude that recruitment of synaptic vesicles to sites where Ca2+ channels cluster, rather than fusion competence, is a limiting step for rapid neurotransmitter release in response to presynaptic action potentials.  相似文献   

12.
The relationship between electrical activity and spike-induced Ca2+ increases in dendrites was investigated in the identified wind-sensitive giant interneurons in the cricket. We applied a high-speed Ca2+ imaging technique to the giant interneurons, and succeeded in recording the transient Ca2+ increases (Ca2+ transients) induced by a single action potential, which was evoked by presynaptic stimulus to the sensory neurons. The dendritic Ca2+ transients evoked by a pair of action potentials accumulated when spike intervals were shorter than 100 ms. The amplitude of the Ca2+ transients induced by a train of spikes depended on the number of action potentials. When stimulation pulses evoking the same numbers of action potentials were separately applied to the ipsi- or contra-lateral cercal sensory nerves, the dendritic Ca2+ transients induced by these presynaptic stimuli were different in their amplitude. Furthermore, the side of presynaptic stimulation that evoked larger Ca2+ transients depended on the location of the recorded dendritic regions. This result means that the spike-triggered Ca2+ transients in dendrites depend on postsynaptic activity. It is proposed that Ca2+ entry through voltage-dependent Ca2+ channels activated by the action potentials will be enhanced by excitatory synaptic inputs at the dendrites in the cricket giant interneurons.  相似文献   

13.
The release of neurotransmitter from presynaptic terminals depends on an increase in the intracellular Ca2+ concentration ([Ca2+]i). In addition to the opening of presynaptic Ca2+ channels during excitation, other Ca2+ transport systems may be involved in changes in [Ca2+]i. We have studied the regulation of [Ca2+]i in nerve terminals of hippocampal cells in culture by the Na(+)-Ca2+ exchanger and by mitochondria. In addition, we have measured changes in the frequency of spontaneous excitatory postsynaptic currents (sEPSC) before and after the inhibition of the exchanger and of mitochondrial metabolism. We found rather heterogeneous [Ca2+]i responses of individual presynaptic terminals after inhibition of Na(+)-Ca2+ exchange. The increase in [Ca2+]i became more uniform and much larger after additional treatment of the cells with mitochondrial inhibitors. Correspondingly, sEPSC frequencies changed very little when only Na(+)-Ca2+ exchange was inhibited, but increased dramatically after additional inhibition of mitochondria. Our results provide evidence for prominent roles of Na(+)-Ca2+ exchange and mitochondria in presynaptic Ca2+ regulation and spontaneous glutamate release.  相似文献   

14.
Mb1 bipolar cells (ON-type cells) of the goldfish retina have exceptionally large (approximately 10 microns in diameter) presynaptic terminals, and thus, are suitable for investigating presynaptic mechanisms for transmitter release. Using enzymatically dissociated Mb1 bipolar cells under whole-cell voltage clamp, we measured the Ca2+ current (ICa), the intracellular free Ca2+ concentration ([Ca2+]i), and membrane capacitance changes associated with exocytosis and endocytosis. Release of transmitter (glutamate) was monitored electrophysiologically by a glutamate receptor-rich neuron as a probe. L-type Ca2+ channels were localized at the presynaptic terminals. The presynaptic [Ca2+]i was strongly regulated by cytoplasmic Ca2+ buffers, the Na(+)-Ca2+ exchanger and the Ca2+ pump in the plasma membrane. Once ICa was activated, a steep Ca2+ gradient was created around Ca2+ channels; [Ca2+]i increased to approximately 100 microM at the fusion sites of synaptic vesicles whereas up to approximately 1 microM at the cytoplasm. The short delay (approximately 1 ms) of exocytosis and the lack of prominent asynchronous release after the termination of ICa suggested a low-affinity Ca2+ fusion sensor for exocytosis. Depending on the rate of Ca2+ influx, glutamate was released in a rapid phasic mode as well as a tonic mode. Multiple pools of synaptic vesicles as well as vesicle cycling seemed to support continuous glutamate release. Activation of protein kinase C increased the size of synaptic vesicle pool, resulting in the potentiation of glutamate release. Goldfish Mb1 bipolar cells may still be an important model system for understanding the molecular mechanisms of transmitter release.  相似文献   

15.
It is generally thought that transmitter release at mammalian central synapses is triggered by Ca2+ microdomains, implying loose coupling between presynaptic Ca2+ channels and Ca2+ sensors of exocytosis. Here we show that Ca2+ channel subunit immunoreactivity is highly concentrated in the active zone of GABAergic presynaptic terminals of putative parvalbumin-containing basket cells in the hippocampus. Paired recording combined with presynaptic patch pipette perfusion revealed that GABA release at basket cell-granule cell synapses is sensitive to millimolar concentrations of the fast Ca2+ chelator BAPTA but insensitive to the slow Ca2+ chelator EGTA. These results show that Ca2+ source and Ca2+ sensor are tightly coupled at this synapse, with distances in the range of 10-20 nm. Models of Ca2+ inflow-exocytosis coupling further reveal that the tightness of coupling increases efficacy, speed, and temporal precision of transmitter release. Thus, tight coupling contributes to fast feedforward and feedback inhibition in the hippocampal network.  相似文献   

16.
We have directly observed the effects of activating presynaptic D1-like and D2-like dopamine receptors on Ca2+ levels in isolated nerve terminals (synaptosomes) from rat striatum. R-(+)-SKF81297, a selective D1-like receptor agonist, and (-)-quinpirole, a selective D2-like receptor agonist, induced increases in Ca2+ levels in different subsets of individual striatal synaptosomes. The SKF81297- and quinpirole-induced effects were blocked by R-(+)-SCH23390, a D1-like receptor antagonist, and (-)-sulpiride, a D2-like receptor antagonist, respectively. SKF81297- or quinpirole-induced Ca2+ increases were inhibited following blockade of voltage-gated calcium channels or sodium channels. In a larger subset of synaptosomes, quinpirole decreased baseline Ca2+. Quinpirole also inhibited veratridine-induced increases in intrasynaptosomal Ca2+ level. Immunostaining confirmed the presynaptic expression of D1, D5, D2 and D3 receptors, but not D4 receptors. The array of neurotransmitter phenotypes of the striatal nerve endings expressing D1, D5, D2 or D3 varied for each receptor subtype. These results suggest that presynaptic D1-like and D2-like receptors induce increases in Ca2+ levels in different subsets of nerve terminals via Na+ channel-mediated membrane depolarization, which, in turn, induces the opening of voltage-gated calcium channels. D2-like receptors also reduce nerve terminal Ca2+ in a different but larger subset of synaptosomes, consistent with the predominant presynaptic action of dopamine in the striatum being inhibitory.  相似文献   

17.
The expression of voltage-gated calcium channels (VGCCs) has not been reported previously in melanoma cells in spite of increasing evidence of a role of VGCCs in tumorigenesis and tumour progression. To address this issue we have performed an extensive RT-PCR analysis of VGCC expression in human melanocytes and a range of melanoma cell lines and biopsies. In addition, we have tested the functional expression of these channels using Ca(2+) imaging techniques and examined their relevance for the viability and proliferation of the melanoma cells. Our results show that control melanocytes and melanoma cells express channel isoforms belonging to the Ca(v) 1 and Ca(v) 2 gene families. Importantly, the expression of low voltage-activated Ca(v) 3 (T-type) channels is restricted to melanoma. We have confirmed the function of T-type channels as mediators of constitutive Ca(2+) influx in melanoma cells. Finally, pharmacological and gene silencing approaches demonstrate a role for T-type channels in melanoma viability and proliferation. These results encourage the analysis of T-type VGCCs as targets for therapeutic intervention in melanoma tumorigenesis and/or tumour progression.  相似文献   

18.
R J Miller 《FASEB journal》1990,4(15):3291-3299
Ca2+ influx into the nerve terminal is normally the trigger for the release of neurotransmitters. Many neurons possess presynaptic receptors whose activation results in changes in the quantity of neurotransmitter released by an action potential. This paper reviews studies that show that presynaptic receptors can regulate the activity of Ca2+ channels in the nerve terminal, resulting in changes in the influx of Ca2+ and in neurotransmitter release. Neurons possess several different types of voltage-sensitive Ca2+ channels. Ca2+ influx through N-type channels appears to trigger transmitter release in many instances. In other cases Ca2+ influx through L channels can influence transmitter release. Neurotransmitters can inhibit N channels through a G protein-mediated transduction mechanism. The G proteins are frequently pertussis toxin substrates. Inhibition of N channels appears to involve changes in their voltage dependence. Neurotransmitters can also regulate neuronal K+ channels. Activation of these K+ channels can lead to a reduction in Ca2+ influx and neurotransmitter release; these effects are also mediated by G proteins. Thus neurotransmitters may often regulate both presynaptic Ca2+ and K+ channels. These two effects may be synergistic mechanisms for the regulation of Ca2+ influx and neurotransmitter release.  相似文献   

19.
A mechanism of the long-term potentiation of transmitter release induced by adrenaline (ALTP) was studied by recording intracellularly the fast excitatory postsynaptic potentials (fast EPSPs). The ALTP was produced during the blockade of K+ channels at the presynaptic terminals by tetraethylammonium (TEA). The synaptic delay, possibly reflecting a relative change in the duration of an action potential at the presynaptic terminal, was not changed during the course of the ALTP. By contrast, it was significantly lengthened by TEA and other K+ channel inhibitors (4-aminopyridine and Cs+) that markedly enhanced the evoked release of transmitter. The magnitude of facilitation of the fast EPSP, induced by a conditional stimulus to the preganglionic nerve, was decreased during the generation of the ALTP, but was unchanged during the potentiation of transmitter release caused by TEA. These results, together with theoretical considerations applying the residual Ca2+ hypothesis to the facilitation, suggest that the enhancement of transmitter release during the ALTP is not caused by an increased Ca2+ influx during a presynaptic impulse owing to the blockade of K+ channel or the modulation of Ca2+ channel, but presumably is induced by a rise in the basal level of free Ca2+ in the presynaptic terminal.  相似文献   

20.
Serotonin (5-HT) produces presynaptic facilitation and FMRFamide produces presynaptic inhibition in Aplysia sensory neurons. These effects may involve the modulation of Ca2+ influx into sensory neuron terminals during action potentials. Here, we have used the Ca2+ indicator dye fura-2 to monitor directly the effects of 5-HT and FMRFamide on internal Ca2+ concentration ([Ca2+]i). 5-HT caused a 50% increase in the transient rise in [Ca2+]i in response to action potentials, whereas FMRFamide decreased the [Ca2+]i transient by 40%. Neither transmitter altered the resting [Ca2+]i, the time course of recovery of the [Ca2+]i transient, or the [Ca2+]i transients produced by intracellular injection of CaCl2 or inositol 1,4,5-trisphosphate. We conclude that the effects of the transmitters on the action potential-induced [Ca2+]i transient are due to changes in Ca2+ influx and not in intracellular Ca2+ homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号