首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 769 毫秒
1.
In sheep, the traditional chemical control of gastrointestinal nematode (GIN) parasites with anthelmintics has led to the widespread development of anthelmintic resistance. The selection of sheep with enhanced resistance to GIN parasites has been suggested as an alternative strategy to develop sustainable control of parasite infections. Most of the estimations of the genetic parameters for sheep resistance to GIN parasites have been obtained from young animals belonging to meat- and/or wool-specialised breeds. We present here the estimated genetic parameters for four parasite resistance traits studied in a commercial population of adult Spanish Churra dairy ewes. These involved two faecal egg counts (FECs) (LFEC0 and LFEC1) and two serum indicator traits, the anti-Teladorsagia circumcincta fourth stage larvae IgA (IgA) and the pepsinogen (Peps) levels. In addition, this study has allowed us to identify the environmental factors influencing parasite resistance in naturally infected Spanish Churra sheep and to quantify the genetic component of this complex phenotype. The heritabilities estimated for the two FECs analysed (0.12 for LFEC0 and 0.09 for LFEC1) were lower than those obtained for the examined serum indicators (0.19 for IgA and 0.21 for Peps). The genetic correlations between the traits ranged from 0.43 (Peps-IgA) to 0.82 (LFEC0-LFEC1) and were higher than their phenotypic counterparts, which ranged between 0.07 and 0.10. The heritabilities estimated for the studied traits were lower than previously reported in lambs. This may be due to the differences in the immune mechanisms controlling the infection in young (antibody reactions) and adult (hypersensitivity reactions) animals/sheep. In summary, this study demonstrates the presence of heritable variation in parasite resistance indicator traits in the Churra population studied, which suggests that genetic improvement is feasible for this complex trait in this population. However, further studies in which the experimental variables are controlled as much as possible are needed to identify the best trait that could be measured routinely in adult sheep as an indicator of parasite resistance.  相似文献   

2.
A genetic analysis has been made of the Ovine Leucocyte Antigenic (OLA) system in Australian merinos. The animals consisted of sires, dams and their progeny. The typing data were consistent with previous findings of a high degree of polymorphism. At least two closely linked loci with several alleles at each are necessary to explain the data. No evidence was found for an association between OLA types and three measures of susceptibility to infection by the blood-sucking parasite Haemonchus contortus. Attention is drawn to the utility of half-sib data for analysis of the genetic control of resistance to parasites in sheep and other animals with a similar breeding structure.  相似文献   

3.
The loss of genetic variation in host populations is thought to increase host susceptibility to parasites. However, few data exist to test this hypothesis in natural populations. Bighorn sheep (Ovis canadensis) populations occasionally suffer disease-induced population declines, allowing us to test for the associations between reduced genetic variation and parasitism in this species. Here, we show that individual mean heterozygosity for 15 microsatellite loci is associated with lungworm abundance (Protostrongylus spp.) in a small, recently bottlenecked population of bighorn sheep (linear regression, r2=0.339, p=0.007). This association remains significant for seven microsatellites located in genes (p=0.010), but not for eight neutral microsatellites (p=0.306). Furthermore, heterozygotes at three of four microsatellites located within disease-related genes had lower lungworm burdens. This study corroborates theoretical findings that increased parasitism and disease may be a consequence of reduced heterozygosity in wild populations, and that certain individual loci influence parasite resistance. The results illustrate the usefulness of using genomic information, strong candidate genes and non-invasive sampling for monitoring both genetic variation and fitness-related traits, such as parasite resistance, in natural populations.  相似文献   

4.
Abstract Parasite resistance and body size are subject to directional natural selection in a population of feral Soay sheep (Ovis aries) on the island of St. Kilda, Scotland. Classical evolutionary theory predicts that directional selection should erode additive genetic variation and favor the maintenance of alleles that have negative pleiotropic effects on other traits associated with fitness. Contrary to these predictions, in this study we show that there is considerable additive genetic variation for both parasite resistance, measured as fecal egg count (FEC), and body size, measured as weight and hindleg length, and that there are positive genetic correlations between parasite resistance and body size in both sexes. Body size traits had higher heritabilities than parasite resistance. This was not due to low levels of additive genetic variation for parasite resistance, but was a consequence of high levels of residual variance in FEC. Measured as coefficients of variation, levels of additive genetic variation for FEC were actually higher than for weight or hindleg length. High levels of additive genetic variation for parasite resistance may be maintained by a number of mechanisms including high mutational input, balancing selection, antagonistic pleiotropy, and host‐parasite coevolution. The positive genetic correlation between parasite resistance and body size, a trait also subject to sexual selection in males, suggests that parasite resistance and growth are not traded off in Soay sheep, but rather that genetically resistant individuals also experience superior growth.  相似文献   

5.
Genetic markers were studied in Herdwick sheep, bred at Compton, with special reference to genetically selected lines which differ in susceptibility or resistance to experimentally produced scrapie. There were no correlations between susceptibility to the disease and albumin, pre-albumin, esterase and haemoglobin phenotypes, and between reduced glutathione levels and alpha-mannosidase isoenzymes, the latter possibly representing a previously undescribed genetic marker in sheep.  相似文献   

6.
Genetic markers were studied in Herdwick sheep, bred at Compton, with special reference to genetically selected lines which differ in susceptibility or resistance to experimentally produced scrapie. There were no correlations between susceptibility to the disease and albumin, pre-albumin, esterase and haemoglobin phenotypes, and between reduced glutathione levels and α-mannosidase isoenzymes, the latter possibly representing a previously undescribed genetic marker in sheep.  相似文献   

7.
Abstract.— Models of host‐parasite coevolution assume the presence of genetic variation for host resistance and parasite infectivity, as well as genotype‐specific interactions. We used the freshwater crustacean Daphnia magna and its bacterial microparasite Pasteuria ramosa to study genetic variation for host susceptibility and parasite infectivity within each of two populations. We sought to answer the following questions: Do host clones differ in their susceptibility to parasite isolates? Do parasite isolates differ in their ability to infect different host clones? Are there host clone‐parasite isolate interactions? The analysis revealed considerable variation in both host resistance and parasite infectivity. There were significant host clone‐parasite isolate interactions, such that there was no single host clone that was superior to all other clones in the resistance to every parasite isolate. Likewise, there was no parasite isolate that was superior to all other isolates in infectivity to every host clone. This form of host clone‐parasite isolate interaction indicates the potential for coevolution based on frequency‐dependent selection. Infection success of original host clone‐parasite isolate combinations (i.e., those combinations that were isolated together) was significantly higher than infection success of novel host clone‐parasite isolate combinations (i.e., those combinations that were created in the laboratory). This finding is consistent with the idea that parasites track specific host genotypes under natural conditions. In addition, correspondence analysis revealed that some host clones, although distinguishable with neutral genetic markers, were susceptible to the same set of parasite isolates and thus probably shared resistance genes.  相似文献   

8.
The present study aimed to identify single-nucleotide polymorphism (SNP) in coding and non-coding regions of interleukin-6 (IL-6) gene of Pakistani sheep. The IL-6 gene of 205 animals from nine sheep breeds were sequenced for screening of SNP. Characterizing the IL-6 gene revealed thirteen SNP sites within the intronic region of IL-6 gene. The novel SNPs found in the present study can serve as genetic marker for association studies with susceptibility/resistance to parasite infection in sheep. This is first report of SNP polymorphism of IL-6 gene of Pakistani sheep.  相似文献   

9.
In order to investigate the accuracy and practicability of the polymerase chain reaction (PCR) in the antenatal diagnosis of congenital toxoplasmosis, a collaborative study involving 15 European laboratories was performed under the auspices of the Biomed 2 Programme of the European Community. Each team received 12 aliquots (four negative, eight positive) of `artificial samples' made of amniotic fluid spiked with tachyzoites of the RH strain of Toxoplasma gondii. Each team performed its own PCR protocol (all were different). Nine of the 15 laboratories were able to detect a single parasite, but two of the 15 found all samples negative. Four of the 15 laboratories found one or more control samples to be falsely positive. This study highlights the lack of homogeneity between PCR protocols and performance and underlines the need for an external quality assurance scheme which could provide `reference' samples that could be used by any laboratory wanting to establish and maintain an accurate diagnostic test based on PCR.  相似文献   

10.
Many theoretical models of host-parasite coevolution assume that variation in host resistance to parasite infection is, at least partially, genetically determined and specific to the strain of infecting parasite. However, very few experimental studies have been conducted to test this assumption in animal-parasite systems. Biomphalaria glabrata snails serve as the intermediate hosts of Schistosoma mansoni. Although some snails are resistant to infection, there is no evidence of fixation of resistance in field populations. Two possible explanations for this are high fitness costs associated with resistance and a dynamic coevolution between parasite and host, perhaps involving matching alleles or gene-for-gene interactions. Two strains of B. glabrata were artificially selected for either resistance or susceptibility to each of two strains of S. mansoni parasite for three generations. Third-generation snails were then were exposed to either the parasite strain to which they had been selected or to a different parasite strain. In both host strains, resistance and susceptibility (compatibility) were found to be heritable. Moreover, compatibility to one parasite strain was not associated with compatibility to another strain, implying no genetic trade-off. Our results are discussed in terms of potential mechanisms of resistance in this host-parasite system and their implications to general coevolutionary theory.  相似文献   

11.
Gastrointestinal nematode parasitism is the most important disease affecting livestock production systems in developing countries, particularly small ruminant production systems. Of particular importance are infections with the strongyle Haemonchus contortus. Integrated disease control strategies are required, including improved management, nutrition and wise use of anthelmintic chemicals. Increasingly, selection of sheep or goats for improved nematode resistance is viewed as a valuable option to complement other control measures. Breeding for resistance is possible because of the existence of extensive genetic variation in resistance, both within and between breeds of sheep and goats. Such breeding schemes are most likely to be based on choice of appropriate breeds adapted to the local environmental conditions, followed by phenotypic selection for resistance. Goal and selection objective traits are likely to include performance (e.g. growth rate) under conditions of parasite challenge, faecal egg count (FEC) and measures of anaemia. With current technologies, genetic markers are likely to be too expensive and logistically difficult to incorporate into breeding schemes in tropical or developing countries. Genotype by environment interactions may be expected, particularly when comparing animals in environments that differ in the extent of parasite challenge or differ in the quality of available nutrition. However, there is no reason to expect antagonistic genetic relationships between performance and resistance, and selection indices should be readily constructed that improve both performance and resistance. If FEC is decreased, then pasture contamination should also decrease, leading to additional benefits for all sheep grazing the same pasture. Finally, breeding for nematode resistance should lead to lasting and sustained improvements in resistance or tolerance. There is no empirical evidence to suggest that nematodes will evolve rapidly in response to resistant hosts, and mathematical models based on genetic and biological principles also suggest that resistance should be sustainable.  相似文献   

12.
Facial eczema (FE) is a hepatogenous photosensitization disease of ruminant animals, particularly in sheep which vary widely in their susceptibility to the disease. The liver damage is caused by the mycotoxin, sporidesmin. There is evidence that the toxicity of sporidesmin is due to its ability to generate 'active oxygen' species. We evaluated the catalase gene, which encodes an enzyme with antioxidant functions, as a candidate for determining the susceptibility of sheep to the disease. Two microsatellite markers, OarSHP3 and OarSHP4, which flank the sheep catalase gene, were isolated from a Yeast Artificial Chromosome (YAC) clone. These markers mapped the catalase locus by linkage to ovine chromosome 15. Eleven informative markers spaced throughout chromosome 15, inclusive of the catalase marker OarSHP4, gave no significant linkage with the disease traits when analysed in four outcross resource pedigrees. However, OarSHP3 and OarSHP4 allele frequencies showed significant differences between FE resistant and susceptible selection-lines. Comparison of sequences of catalase cDNAs from sheep of resistant and susceptible lines showed only two silent mutations. A single nucleotide polymorphisms (KP1) in exon 6 of the catalase gene also showed significant differences in allele frequencies between the selection lines. The lack of evidence for linkage in outcross pedigrees, but the significant association in the genetic lines, implies that catalase is involved in determining the susceptibility of sheep to facial eczema, and that the candidate gene's effect is probably recessive or minor.  相似文献   

13.
A total of 180 mtDNA sequences from hair Caribbean (93), West African (73) and Canarian‐wooled (14) sheep were analysed to shed light on the origin of hair sheep. A comparison of 360 Iberian sheep sequences retrieved from GenBank was performed to assess a possible European origin of the Caribbean hair sheep. These 180 sequences gave 48 different haplotypes (16 in Caribbean sheep). All Caribbean and Canarian‐wooled sequences and 91.8% of the West African samples belonged to haplogroup B. The sheep analysed showed wide haplotypic identity. Caribbean sheep shared roughly two‐thirds of their samples with Canarian‐wooled and West African samples, respectively. Principal component analysis showed that the Caribbean and the Canarian‐wooled sheep clustered together. Additional analyses showed that hair and Iberian sheep had wide genetic identity. It was not possible to ascertain a single Canarian, African or European origin of the Caribbean hair sheep using mtDNA markers only. European, African and Caribbean hair sheep maternal genetic backgrounds likely result from related domestication events.  相似文献   

14.
A composite population of Haemonchus contortus was established with larvae from seven diverse sources, then maintained in Merino sheep bred to have either increased or decreased resistance to Haemonchus. After five, seven and 14 parasite generations, the two resulting lines of parasites were used to infect sheep from the increased resistance line, an unselected control line and the decreased resistance line. Line of sheep had a highly significant effect on average faecal egg counts 4 and 5 weeks after infection (geometric means 329, 735 and 1490 epg, respectively after the 14th generation), but the two lines of parasites yielded similar egg counts. There was no significant interaction between line of sheep and line of parasite, indicating that the parasite populations had not diverged significantly in their reproductive fitness, as measured by faecal egg count.  相似文献   

15.
Understanding of the genetic basis for susceptibility and resistance is still lacking for most aquatic host–parasite systems, for instance, for phytoplankton and their fungal parasites. Fungal parasites can have significant effects on phytoplankton populations, mainly through their ability to decimate algal host populations during epidemics. We used random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) analysis to study levels of genetic variation within a population of the freshwater diatom Asterionella formosa Hassall in relation to parasitism by the obligate, host‐specific, fungal parasite Zygorhizidium planktonicum Canter. The level of genetic variation within the A. formosa population in Lake Maarsseveen, The Netherlands was found to be high despite the presumed absence or very low frequency of sexual reproduction in this species, the limited gene flow, and the severity of parasite attack that would purge the population from susceptible genotypes. RAPD analysis revealed four distinct banding patterns, with 3 of 21 markers (14%) being polymorphic. In AFLP analysis, every single isolate of A. formosa showed a unique banding pattern, and 120 of the 210 AFLP markers (57%) were found to be polymorphic. Furthermore, character compatibility analysis revealed that sexual reproduction may be one of the mechanisms that generates and maintains genetic variation in the A. formosa population in Lake Maarsseveen. The presence of genetic variation in A. formosa was reflected in infection experiments, which showed that genetically different A. formosa strains differed in their susceptibility to various Z. planktonicum strains and that parasite strains differed in their ability to infect particular host strains.  相似文献   

16.
Lymphocyte antigens were tested in sheep which had been selected for responsiveness to vaccination against the intestinal nematode Trichostrongylus colubriformis. These sheep had been bred in an assortative mating programme which produced offspring designated as either “high responders” or “low responders”, with highly heritable resistance or susceptibility.Ovine lymphocyte antigen (OLA) typing antisera were obtained from parous ewes in the course of matings which produced the high and low responder flocks. A particular antigen (SY1) was found to be present in high frequency on the lymphocytes of high responder (72·2%) and in lower frequency (21·9%) on the lymphocytes of low responder rams. In ewes, the frequency for high responders was 65·7% and for low responders it was 33·5%. A similar association between the SY1 antigen and low faecal egg count was found in random-bred sheep which had been vaccinated with irradiated larvae and challenged with normal larvae. The conclusion was drawn that this lymphocyte antigen was likely to be part of the sheep major histocompatibility complex which influenced the immune response of sheep to vaccination against the parasite.  相似文献   

17.
Strains of the invasive toxic cyanobacteria Cylindrospermopsis raciborskii were genetically evaluated with four genetic markers encompassing in total 2.9 kb (16S rRNA, ITS longer spacer, ITS shorter spacer and rpoC1) to assess the phylogenetic relationships, genetic variation and population differentiation of the species across all five continents. The phylogenetic analysis showed that the C. raciborskii strains grouped into three well-supported distinct clusters: (I) European (II) African/American, and (III) Asian/Australian. The European group presented a high genetic similarity with the Asian and the Australian isolates than with the African and American isolates. Several Portuguese isolates were analyzed (n = 7) and revealed a low genetic differentiation with little geographical structure. The genetic distance among groups and phylogenetic relationships obtained in this study suggest that the recent invasion of C. raciborskii in Portuguese and other European temperate environments could have had its origin in the Asian and/or Australian continents.  相似文献   

18.
We tested for cross‐species amplification of microsatellite loci located throughout the domestic sheep (Ovis aries) genome in two north American mountain ungulates (bighorn sheep, Ovis canadensis, and mountain goats, Oreamnos americanus). We identified 247 new polymorphic markers in bighorn sheep (≥ 3 alleles in one of two study populations) and 149 in mountain goats (≥ 2 alleles in a single study population) using 648 and 576 primer pairs, respectively. Our efforts increased the number of available polymorphic microsatellite markers to 327 for bighorn sheep and 180 for mountain goats. The average distance between successive polymorphic bighorn sheep and mountain goat markers inferred from the Australian domestic sheep genome linkage map (mean ± 1 SD) was 11.9 ± 9.2 and 15.8 ± 13.8 centimorgans, respectively. The development of genomic resources in these wildlife species enables future studies of the genetic architecture of trait variation.  相似文献   

19.
The population structure and genetic diversity of 57 European and Middle Eastern marginal and cosmopolitan sheep breeds from 15 countries were analysed by typing 31 microsatellite markers. Mean unbiased expected heterozygosities ranged from 0.63 in British Exmoor Horn to 0.77 in Albanian Ruda. South-eastern European and Middle-Eastern sheep breeds were significantly more variable than northwestern and western European breeds. An overall heterozygote deficiency (f) across all loci was observed (P < 0.001), while genetic differentiation (theta) was 5.7%. Principal component analysis and Bayesian model-based clustering indicate a south-east to north-west cline, but also revealed distinct groups of Middle-Eastern fat-tailed sheep, south-eastern European sheep and north-western/western European sheep. Within the last group, two less-distinct clusters comprised the Merino-type and Alpine breeds respectively. The incomplete demarcations of most clusters probably reflects cross-breeding and/or upgrading.  相似文献   

20.
Genetic compatibility, nonspecific defenses, and environmental effects determine parasite resistance. Host mating system (selfing vs. outcrossing) should be important for parasite resistance because it determines the segregation of alleles at the resistance loci and because inbreeding depression may hamper immune defenses. Individuals of a mixed mating hermaphroditic freshwater snail, Lymnaea ovata, are commonly infected by a digenetic trematode parasite, Echinoparyphium recurvatum. We examined covariation between quantitative resistance to novel parasites and mating system by exposing snail families from four populations that differed by their inbreeding coefficients. We found that resistance was unrelated to inbreeding coefficient of the population, suggesting that the more inbred populations did not carry higher susceptibility load than the less inbred populations. Most of the variation in resistance was expressed among the families within the populations. In the population with the lowest inbreeding coefficient, resistance increased with outcrossing rate of the family, as predicted if selfing had led to inbreeding depression. In the other three populations with higher inbreeding coefficients, resistance was unrelated to outcrossing rate. The results suggest that in populations with higher inbreeding some of the genetic load has been purged, uncoupling the predicted relationship between outcrossing rate and resistance. Snail families also displayed crossing reaction norms for resistance when tested in two environments that presented low and high immune challenge, suggesting that genotype-by-environment interactions are important for parasite resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号