首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcellular distribution of 125I-insulin in the perfused rat liver was compared with the subcellular distribution of the lysosomally targeted asialoglycoprotein, 125I-asialofetuin. The use of Percoll density gradient medium provided excellent separation of lysosomes from the subcellular membrane fractions. Following perfusion with 125I-asialofetuin, a distinct peak of TCA-precipitable radioactivity could be observed in the lysosomal region of the gradient. In contrast, the gradient distribution of TCA-precipitable radioactivity following perfusion with physiological concentrations of 125I-insulin was unimodal, the observed peak corresponding to the distribution of intracellular membrane marker enzymes. Leupeptin, an inhibitor of lysosomal proteolysis, inhibited the degradation of 125I-asialofetuin but had no effect on 125I-insulin degradation. In addition, leupeptin produced a marked increase in TCA-precipitable radioactivity in the lysosome rich region of gradients prepared from livers perfused with 125I-asialofetuin. No such effect was observed following perfusion with 125I-insulin. These findings are consistent with an initial localization of the internalized insulin molecule with the membraneous system of the liver cell rather than the lysosomal system.  相似文献   

2.
Degradation of 125I-labelled HDL ([125I]HDL) was measured in isolated rat hepatocytes that had been preincubated with [125I]HDL and then reincubated in fresh medium without [125I]HDL. About 5 % of the [125I]HDL associated with the cells in advance were degraded per hour at 37 °C. This in vitro degradation was inhibited about 50% by lysosomal inhibitors such as chloroquine, ammonia and leupeptin. Depolymerization of microtubuli by colchicine inhibited the degradation of [125I]HDL to about 65–75 % of the control cells. Cytochalasin B (CB), a destabilizer of microfilaments, had a less marked effect on the degradation in vitro. Degradation of [125I]HDL associated with cells in vivo after intravenous injection was also studied in isolated cells. About 8.5% of the [125I]HDL associated with the cells in vivo were degraded per hour in the isolated cells. The effects of ammonia, chloroquine, leupeptin and colchicine on HDL degradation were similar for [125I]HDL taken up in vivo and in vitro. Subcellular fractionation by centrifugation in sucrose gradients indicated that [125I]HDL associated with hepatocytes in vivo are primarily accumulated in lysosomes. [125I]HDL associated with the cells in vitro are located in organelles whose distribution coincides with that of 5′-nucleotidase. These organelles may be endocytic vesicles. It is concluded that the internalization of [125I]HDL in rat hepatocytes is relatively slow. The intracellular degradation of the apoproteins of HDL is at least partly lysosomal.  相似文献   

3.
Iodinated thyroglobulin stored in the thyroid follicular lumen is subjected to an internalization process and thought to be transferred into the lysosomal compartment for proteolytic cleavage and thyroid hormone release. In the present study, we have designed in vitro models to study: 1) the transfer of endocytosed thyroglobulin into lysosomes, and 2) the intracellular fate of free thyroid hormones and iodinated precursors generated by intralysosomal proteolysis of thyroglobulin. Open follicles prepared from pig thyroid tissue by collagenase treatment were used to probe the delivery of exogenous thyroglobulin to lysosomes via the differentiated apical cell membrane. Open follicles were incubated with pure [125I]thyroglobulin with or without unlabeled thyroglobulin in the presence or in the absence of chloroquine. Subcellular fractionation on a Percoll gradient showed that [125I]thyroglobulin was internalized and present in low (for the major part) and high density thyroid vesicles. In chloroquine-treated open follicles, we observed the appearance of a definite fraction of [125I]thyroglobulin in a lysosome subpopulation having the expected properties of phagolysosomes or secondary lysosomes. In contrast, in control open follicles, the amount of [125I]thyroglobulin or degradation products found in high density vesicles was lower and associated with the bulk of lysosomes, i.e., primary lysosomes. The content in thyroglobulin and degradation products of lysosomes at steady-state was analyzed by Western blot using polyclonal anti-pig thyroglobulin antibodies. Under reducing conditions, immunoreactive thyroglobulin species correspond to polypeptides with molecular weights ranging from 130,000 to less than 20,000. The presence of free thyroid hormones and iodotyrosines inside lysosomes and their intracellular fate was studied in dispersed thyroid cells labeled with [125I]iodide. Neo-iodinated [125I]thyroglobulin gave rise to free [125I]T4 which was secreted into the medium. In addition to released [125I]T4, a fraction of free [125I]T4 was identified inside the cells. Lysosomes isolated from dispersed thyroid cells did not contain significant amounts of free [125I]T4. The free intracellular [125I]T4 fraction seems to represent an intermediate 'hormonal pool' between thyroglobulin-bound T4 and secreted T4. Evidence for such a precursor-product relationship was obtained from pulse-chase experiments. In conclusion: 1) open thyroid follicles have the ability to internalize thyroglobulin by a mechanism of limited capacity and to address the endocytosed ligand to lysosomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The intracellular transport and degradation of asialoorosomucoid (AOM) in isolated rat hepatocytes was studied by means of subcellular fractionation in Nycodenz gradients. The asialoglycoprotein was labelled by covalent attachment of a radioiodinated tyramine-cellobiose adduct ( [125I]TC) which leads to labelled degradation products being trapped intracellularly and thus serving as markers for the degradative organelles. The ligand was initially (1 min) in a slowly sedimenting (small) vesicle and subsequently in larger endosomes. Acid-soluble, radioactive degradation products were first found in a relatively light lysosome whose distribution coincided in the gradient with that of the larger endosome. Later (30 min) degradation products were found in denser lysosomes which banded in the same region of the gradient as the lysosomal enzyme, beta-acetylglucosaminidase. Colchicine, monensin and leupeptin all inhibited degradation of [125I]tyramine-cellobiose asialoorosomucoid ( [125I]TC-AOM) and reduced the formation of degradation products in both the light and the dense lysosomes. In presence of monensin and colchicine no undegraded ligand was seen in the dense lysosome, suggesting that uptake in these vesicles was inhibited. Leupeptin allowed accumulation of undegraded ligand in the dense lysosome. Therefore, transfer from light to dense lysosomes is not dependent on degradation as such. In the presence of monensin two peaks of undegraded ligand were found in the gradients. It seems possible that in the monensin-sensitive endosomes, dissociation of the ligand-receptor complex is inhibited, allowing ligand to recycle with the receptors in small vesicles.  相似文献   

5.
Pseudopregnant rats were injected with either native human chorionic gonadotropin or with (125I)-human chorionic gonadotropin and their ovarian homogenates fractionated on Percoll density gradients. The levels of alpha and beta subunits within subcellular fractions were measured using radioimmunoassays specific for each subunit. Radioactivity measurements of fractions obtained from rats injected with (125I)-human chorionic gonadotropin were used as a separate index of alpha subunit distribution. The alpha subunit was primarily restricted to a combined plasma membrane/prelysosomal vesicle fraction. Immunoreactive beta subunit was present at high concentrations within both this plasma membrane/prelysosomal vesicle fraction and within lysosomes. The striking difference in alpha and beta subcellular distribution may arise from differential sensitivities to lysosomal enzymes.  相似文献   

6.
Colloidal iron dextran particles bearing wheat germ agglutinin (WGA/FeDex) were bound by glycoconjugates expressed at the surface of HepG2 cells. Bound WGA/FeDex was internalized when cells were incubated at 37 degrees C and accumulated in intracellular structures which have the same buoyant density as the plasma membrane when examined on Percoll density gradients. The intracellular structures containing WGA/FeDex were identified as multivesicular bodies (MVB) by transmission electron microscopy. WGA/FeDex was not transported to lysosomes nor did it interfere with uptake and transport of GalBSA to lysosomes by the asialoglycoprotein receptor. WGA/FeDex was seen predominantly in non-coated invaginations at the cell surface, suggesting it may enter cells at a different site than GalBSA/FeDex. Highly enriched plasma membranes and MVBs containing superparamagnetic [125I]WGA/FeDex particles were prepared by high gradient magnetic affinity chromatography (HIMAC). Plasma membranes prepared by HIMAC were enriched 30-fold for [125I]WGA/FeDex, 15-fold for alkaline phosphodiesterase I, and 9-fold for galactosyltransferase relative to the crude post-nuclear homogenate and consisted entirely of plasmalemmal sheets. Intracellular structures containing WGA/FeDex were enriched 35-fold for [125I]WGA/FeDex, 10-fold for alkaline phosphodiesterase I, and 10-fold for galactosyltransferase but did not contain lysosomal beta-galactosidase. WGA/FeDex has a different ultimate destination in HepG2 cells than ligands internalized by the asialoglycoprotein receptor and can be used to obtain highly enriched plasma membranes and MVBs from cultured cells.  相似文献   

7.
Using a combination of differential centrifugation and isopycnic centrifugation in Percoll gradients, we obtained a highly purified preparation of thyroid lysosomes [Alquier, Guenin, Munari-Silem, Audebet & Rousset (1985) Biochem. J. 232, 529-537] in which we identified thyroglobulin. From this observation, we postulated that the isolated lysosome population could be composed of primary lysosomes and of secondary lysosomes resulting from the fusion of lysosomes with thyroglobulin-containing vesicles. In the present study, we have tried to characterize these lysosome populations by (a) subfractionation of purified lysosomes using iterative centrifugation on Percoll gradients and (b) by functional studies on cultured thyroid cells. Thyroglobulin analysed by soluble phase radioimmunoassay, Western blotting or immunoprecipitation was used as a marker of secondary lysosomes. The total lysosome population separated from other cell organelles on a first gradient was centrifuged on a second Percoll gradient. Resedimented lysosomes were recovered as a slightly asymmetrical peak under which the distribution patterns of acid hydrolase activities and immunoreactive thyroglobulin did not superimpose. This lysosomal material (L) was separated into two fractions: a light (thyroglobulin-enriched) fraction (L2) and a dense fraction (L1). L1 and L2 subfractions centrifuged on a third series of Percoll gradients were recovered as symmetrical peaks at buoyant densities of 1.12-1.13 and 1.08 g/ml, respectively. In each case, protein and acid hydrolase activities were superimposable. The specific activity of acid phosphatase was slightly lower in L2 than in L1. In contrast, the immunoassayable thyroglobulin content of L2 was about 4-fold higher than that of L1. The overall polypeptide composition of L, L1 and L2 analysed by polyacrylamide-gel electrophoresis was very similar, except for thyroglobulin which was more abundant in L2 than in either L or L1. The functional relationship between L1 and L2 lysosome subpopulations has been studied in cultured thyroid cells reassociated into follicles. Thyroid cells, prelabelled with 125I-iodide to generate 125I-thyroglobulin, were incubated in the absence of in the presence of inhibitors of intralysosomal proteolysis. The fate of 125I-thyroglobulin, and especially its appearance in the lysosomal compartment, was studied by Percoll gradient fractionation and immunoprecipitation. Treatment of prelabelled thyroid cells with chloroquine and leupeptin induced the accumulation of immunoprecipitable 125I-thyroglobulin into a lysosome fraction corresponding to the L2 subpopulation. In control cells, in which intralysosomal proteolysis was n  相似文献   

8.
To quantify the kinetics of the plasma membrane flow into lysosomes, we covalently labelled at 4 degrees C the pericellular membrane of rat fibroblasts and followed label redistribution to the lysosomal membrane using purified lysosomal preparations. The polypeptides were, either labelled with 125I by the lactoperoxidase procedure, or conjugated to [3H]peroxidase using bisdiazobenzidine as a bifunctional reagent. Both labels were initially bound to plasma membrane, as indicated by their equilibrium density in sucrose or Percoll gradients and their displacement by digitonin, as well as by electron microscopy. Upon cell incubation at 37 degrees C, both covalent labels were lost from cells with diphasic kinetics: a minor component (35% of cell-associated labels) was rapidly released (half-life less than 1 h), and most label (65%) was released slowly (half-life was 20 h for incorporated 125I and 27 h for 3H). Immediately after labelling up to 30 h after incubation at 37 degrees C, the patterns of 125I-polypeptides quantified by autoradiography after SDS-PAGE were indistinguishable, indicating no preferential turnover for the major plasma membrane polypeptides. The redistribution of both labels to lysosomes was next quantified by cell fractionation. At equilibrium (between 6 and 25 h of cell incubation) 2-4% of cell-associated 125I label was recovered with the purified lysosomal membranes. By contrast, when 3H-labelled cells were incubated for 16 h, most of the label codistributed with lysosomes. However, only 6% of cell-associated 3H was bound to lysosomal membrane. These results indicate that in cultured rat fibroblasts, a minor fraction of plasma membrane polypeptides becomes associated with the lysosomal membrane and is constantly equilibrated by membrane traffic.  相似文献   

9.
The role of the pinosome-lysosome pathway in the degradation of 125I-labelled bovine insulin by cultured human fibroblasts was examined by comparing the effects of various known inhibitors of pinocytosis and lysosomal degradation on the uptake and degradation of 125I-labelled polyvinylpyrrolidone, formaldehyde-denatured bovine serum albumin and bovine insulin by these cells. Fibroblasts incubated with polyvinylpyrrolidone steadily accumulate this substrate, whereas incubations with insulin or denatured albumin led to the progressive appearance in the culture medium of [125I]iodotyrosine. Inhibitors of pinocytosis (bacitracin, colchicine and monensin), metabolic inhibitors (2,4-dinitrophenol and NaF), lysosomotropic agents (chloroquine and NH4Cl) and an inhibitor of cysteine-proteinases (leupeptin) decreased the rate of uptake of polyvinylpyrrolidone and denatured albumin very similarly, but only bacitracin had an effect on the processing of insulin. Chloroquine, NH4Cl and leupeptin strongly inhibited the digestion of denatured albumin, but not of insulin. The different responses to the modifiers, with polyvinylpyrrolidone and denatured albumin on the one hand and insulin on the other, suggest that insulin degradation can occur by a non-lysosomal pathway. The very strong inhibitory effect of bacitracin on insulin processing by fibroblasts may point to an important role of plasma membrane proteinases in insulin degradation.  相似文献   

10.
Several glycolytic enzymes (lactate dehydrogenase, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase) were radiolabelled by [125I]iodination, conjugation with 125I-labelled Bolton & Hunter reagent and reductive [3H]methylation, and their degradative rates after microinjection into 3T3-L1 cells compared with that of the extracellular protein bovine serum albumin. Although the albumin remains largely cytosolic in recipient cells, the glycolytic enzymes rapidly (less than 30 min) become insoluble, as measured by detergent and salt extractions. The microinjected glycolytic enzymes appear to form disulphide-linked aggregates, are found in a cell fraction rich in vimentin-containing intermediate filaments and histones (nuclear-intermediate-filament fraction), and are degraded slowly by a lysosomal mechanism, as judged by the effects of inhibitors (NH4Cl, leupeptin, 3-methyladenine). 125I-labelled bovine serum albumin appears to be degraded rapidly and non-lysosomally. Prolonged treatment (96 h) of cultured cells with leupeptin results in the accumulation of pulse-labelled ([35S]methionine for 24 h) endogenous cell proteins in the detergent-and salt-non-extractable residue, but NH4Cl and 3-methyladenine do not have this effect. The findings are in terms of the interpretation of experiments involving microinjection of proteins to study intracellular protein protein degradation by autophagy.  相似文献   

11.
Isolated rat hepatocytes take up and degrade [125I]tyramine-cellobiose-labelled asialofetuin [( 125I]TC-AF). The labelled degradation products are trapped at the site of degradation. The intracellular transport of [125I]TC-AF was studied by means of cell fractionation in Nycodenz gradients. The labelled ligand was kept in a small, slowly sedimenting vesicle during the first minutes after uptake in the cells, and was then transferred to a larger endosome. Labelled degradation products first appeared in an organelle with the same density distribution as the larger endosome and then in a denser organelle. These observations suggest that two types of lysosome, 'light' lysosomes and 'dense', are sequentially involved in the degradation of the asialoglycoprotein. The bulk of the lysosomal enzymes is associated with the dense lysosome.  相似文献   

12.
HRP-anti LGP107Fab' and 125I-anti LGP107IgG were used as probes to study the movement of LGP107 in the endocytic membrane transport system in primary cultured hepatocytes of rats. Following the addition of HRP-anti LGP107Fab' to the culture medium, the transfer of the antibody conjugate from the cell surface of lysosomes was examined by cell fractionation on Percoll density gradients. The HRP tracer showed a bimodal subcellular distribution, in plasma membrane and lysosomal fractions. The amount of HRP found in the lysosomal fractions became larger as the period of cell incubation was increased. The rate of HRP accumulation in lysosomes was 0.13% of the administered load per hour per 10(6) cells. When cells were given 125I-anti LGP107 IgG, the antibody was not stored but was rapidly degraded in the lysosomes. The uptake of 125I-IgG by the cells, which was assessed by measuring the TCA-soluble radiolabeled degradation products released into the medium, increased proportionally to the administered concentration of the antibody and to the incubation time. The rate of uptake of the polyvalent 125I-IgG was comparable to that for the uptake of the monovalent HRP-Fab', and remained unchanged even after long exposure of the cells to a saturating concentration of the polyvalent IgG. This uptake process continued for many hours in the cells exposed to the protein synthesis inhibitor, cycloheximide. These results suggest that there is a continuous circulation of LGP107 between the cell surface and lysosomes in hepatocytes.  相似文献   

13.
The uptake and degradation of a homologous rat serum asialoglycoprotein, 125I-asialoorosomucoid, and the effects on this metabolism by leupeptin, a proteinase inhibitor, were studied in the perfused rat liver. 125I-Asialoorosomucoid was rapidly taken up by the liver (t1/2 = 5.7 min) and acid-soluble degradation products began to appear in the circulating perfusate medium after 20-30 min. These products accounted for 60-65% of the initially added radioactivity after 90 min of perfusion. The early events in the galactose-mediated uptake of 125I-asialoorosomucoid were unchanged by the presence of leupeptin. However, the appearance of acid-soluble degradation products was greatly reduced when livers had been pretreated with the inhibitor (1.0 mg for 60 min). This effect corresponded with an increase in acid-precipitable material being located within the lysosomal-rich fraction from homogenates of leupeptin-treated livers. Leupeptin inhibited degradation of 125I-asialoorosomucoid by approx. 85% relative to control values over 90 min of perfusion. Inhibition of asialoorosomucoid degradation was also demonstrated in vitro. Leupeptin (1.0 mM) reduced hydrolysis of this glycoprotein substrate by greater than 50% during a 24 h incubation with isolated lysosomal enzymes. The thiol proteinases, cathepsin B, H and L, which are known to be inhibited by leupeptin, are apparently involved in initiating digestion of rat 125I-asialoorosomucoid within liver lysosomes. As a result of inhibition by leupeptin both in the perfused liver and in vitro very limited changes occurred in the native molecular weight of the starting glycoprotein.  相似文献   

14.
The effect of the protease inhibitor leupeptin on the intracellular distribution of [14C]-sucrose-asialofetuin in isolated rat hepatocytes was investigated. Leupeptin had no effect on the uptake but reduced the degradation of asialofetuin. Fractionation of hepatocytes by isopycnic centrifugation in sucrose gradients indicated that prolonged treatment with leupeptin inhibited the uptake of asialofetuin into the lysosomes. Therefore, leupeptin inhibits degradation of asialofetuin both by inhibiting intralysosomal proteolysis and transport of endocytosed asialofetuin to the lysosomes.  相似文献   

15.
《The Journal of cell biology》1988,107(6):2097-2107
Lysosomal enzymes are initially synthesized as precursor polypeptides which are proteolytically cleaved to generate mature forms of the enzymatically active protein. The identification of the proteinases involved in this process and their intracellular location will be important initial steps in determining the role of proteolysis in the function and targeting of lysosomal enzymes. Toward this end, axenically growing Dictyostelium discoideum cells were pulse radiolabeled with [35S]methionine and chased in fresh growth medium containing inhibitors of aspartic, metallo, serine, or cysteine proteinases. Cells exposed to the serine/cysteine proteinase inhibitors leupeptin and antipain and the cysteine proteinase inhibitor benzyloxycarbonyl-L-phenylalanyl-L-alanine-diazomethyl ketone (Z-Phe- AlaCHN2) were unable to complete proteolytic processing of the newly synthesized lysosomal enzymes, alpha-mannosidase and beta-glucosidase. Antipain and leupeptin treatment resulted in both a dramatic decrease in the efficiency of proteolytic processing, as well as a sevenfold increase in the secretion of alpha-mannosidase and beta-glucosidase precursors. However, leupeptin and antipain did not stimulate secretion of lysosomally localized mature forms of the enzymes suggesting that these inhibitors prevent the normal sorting of lysosomal enzyme precursors to lysosomes. In contrast to the results observed for cells treated with leupeptin or antipain, Z-Phe-AlaCHN2 did not prevent the cleavage of precursor polypeptides to intermediate forms of the enzymes, but greatly inhibited the production of the mature enzymes. The accumulated intermediate forms of the enzymes, however, were localized to lysosomes. Finally, fractionation of cell extracts on Percoll gradients indicated that the processing of radiolabeled precursor forms of alpha-mannosidase and beta-glucosidase to intermediate products began in cellular compartments intermediate in density between the Golgi complex and mature lysosomes. The generation of the mature forms, in contrast, was completed immediately upon or soon after arrival in lysosomes. Together these results suggest that different proteinases residing in separate intracellular compartments may be involved in generating intermediate and mature forms of lysosomal enzymes in Dictyostelium discoideum, and that the initial cleavage of the precursors may be critical for the proper localization of lysosomal enzymes.  相似文献   

16.
The intracellular transport and degradation of in vivo endocytosed 125I-tyramine cellobiose-labelled low density lipoprotein (125I-TC-LDL) in rat liver cells were studied by means of subcellular fractionation in Nycodenz, sucrose and Percoll density gradients, as well as by means of analytical differential centrifugation. Initially, labelled LDL was located in endocytic vesicles of low densities. Subsequently, acid-soluble and acid-precipitable radioactivities were found in organelles with buoyant densities distinctly lower than that of the main peaks of the lysosomal marker enzymes acid phosphatase and N-acetyl-beta-glucosaminidase. These prelysosomal organelles may represent multivesicular bodies (MVBs). Finally, 6 h after injection and onwards, the acid-soluble radioactivity cosegregated completely with the two lysosomal marker enzymes, suggesting that the degradation products were in secondary lysosomes. The rate of intracellular processing of LDL was very slow compared to that of asialoglycoproteins, suggesting that LDL followed a unique intracellular pathway, that may be specific for this type of ligand.  相似文献   

17.
The intracellular movement, following uptake of 125I-labelled denatured serum albumin into nonparenchymal liver cells, was followed by means of subcellular fractionation. Isolated nonparenchymal rat liver cells were prepared by means of differential centrifugation. The cells were homogenized in a sonifier and the cytoplasmic extract subjected to isopycnic centrifugation in a sucrose gradient. The intracellular movement of the labelled albumin was followed by comparing the distribution profile of radioactivity in the sucrose gradient with those of marker enzymes for plasma membrane and lysosomes. The distribution profiles for radioactivity after the cells had been exposed to the labelled denatured albumin for different time periods indicated that the radioactivity was first associated with subcellular fractions of lower modal densities than the lysosomes. With time of incubation the radioactivity moved towards higher densities. After prolonged incubations in the absence of extracellular labelled denatured albumin the radioactivity peak coincided with that of the lysosomal marker β-acetylglucosaminidase. When the cells were treated with the lysosomal inhibitor leupeptin, degradation of the labelled albumin was decreased, resulting in a massive intracellular accumulation of radioactivity. The radioactivity peak coincided with the peak of activity for the lysosomal marker β-acetylglucosaminidase, suggesting lysosomal degradation.  相似文献   

18.
All four subunits of the acetylcholine receptor (AChR) are labeled by the lipid-soluble photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) with different stoichiometries and levels of saturable modification sites, dependent on the conformational state of the AChR. This probe is specific for hydrophobic targets such as the membrane-spanning regions of intrinsic proteins. In the resting state, the gamma subunit is labeled 4.5 times greater and the beta and delta subunits 1.65-1.69 greater than the alpha subunit. Carbamylcholine-induced desensitization of the AChR lowers the level and alters the stoichiometry of [125I]TID incorporation into each subunit. This effect is shown to be specific in two ways. First, it is eliminated by prior equilibration with excess alpha-bungarotoxin, which does not change the [125I]TID-labeling pattern of the AChR from that of the resting state. Second, bacteriorhodopsin is labeled by [125I]TID to the same extent both in the presence and absence of carbamylcholine. The noncompetitive blocker phencyclidine does not alter [125I]TID labeling of the AChR relative to the resting state. The 43-kDa protein, which is believed to cross-link the AChR to the cytoskeleton at the synapse, is not modified by [125I]TID, in agreement with earlier conclusions that the 43-kDa protein is not an intrinsic membrane protein.  相似文献   

19.
To learn more about the pathway for degradation of an intrinsic membrane protein, we studied in cultured chick myotubes the effects of certain protease inhibitors and chloroquine (an inhibitor of lysosomal function) on degradation of the acetylcholine receptor measured with the specific ligand 125I-α-bungarotoxin. Leupeptin, chymostatin, anti-pain and chloroquine decreased by 2–10 fold the rate of degradation of the acetylcholine receptor-125I-α-bungarotoxin complex to 125I-tyrosine (p < 0.01). After removing the inhibitors, the degradative rate returned to control levels. Leupeptin and chloroquine did not appear toxic to the cells; these agents did not alter the overall rate of protein synthesis, and leupeptin did not decrease the incorporation of receptors into the surface membrane. Therefore these inhibitors probably inhibit the degradative process selectively. A lysosomal site for receptor degradation appears probable, since chloroquine slows this process; leupeptin, chymostatin and antipain all inhibit cathepsin B; and chloroquine and to a lesser extent leupeptin altered the ultrastructural appearance of this organelle. Cultures labeled with 125I-α-bungarotoxin and then incubated with leupeptin or chloroquine contained more radioactive protein than control cells. This material co-electrophoresed with bungarotoxin on sodium dodecylsulfate-urea-polyacrylamide gels. Thus myotubes exposed to these inhibitors seemed to accumulate undegraded bungarotoxin. They did not, however, contain more acetylcholine receptors on their surface. Instead, the inhibitor-treated cells accumulate toxin and receptors at some internal site. Thus treatment with such inhibitors does not appear to be a useful approach to the therapy of myasthenia gravis. The additional 125I-toxin found in cells incubated with leupeptin or chloroquine was less accessible to exogenous protease than the toxin bound to control cells and was more resistant to extraction by Triton X-100. Since internalization of the receptor continued in the presence of these inhibitors, this process must not be coupled tightly to subsequent proteolysis. Measurement of receptors within cells not exposed to 125I-α-bungarotoxin showed that incubation of myotubes with leupeptin or chloroquine for 48 hr increased the number of internal bungarotoxin-binding sites 2–11 fold (p < 0.001). Thus cells treated with these agents accumulate receptors intracellularly in a form that sediments at 35,000 × g. Electron microscopy showed that these treated myotubes contain 3–6 times more coated vesicles within their cytoplasm than control cells (p < 0.001). Thus chloroquine and leupeptin may retard receptor degradation in part by interfering with the fusion of coated vesicles with lysosomes.  相似文献   

20.
Human fibroblasts when induced to make nonhelical , defective collagen have mechanisms for degrading up to 30% of their newly synthesized collagen intracellularly prior to secretion. To determine if at least a portion of the degradation of defective collagen occurs by lysosomes, extracts of cultured HFL-1 fibroblasts were examined for proteinases capable of degrading denatured type I [3H]procollagen. The majority of the proteolytic activity against denatured [3H]-procollagen had a pH optimum of 3.5-4; it was stimulated by dithiothreitol and inhibited 95% by leupeptin, 10% by pepstatin, and 98% by leupeptin and pepstatin together. Extracts of purified lysosomes from the fibroblasts were active in degrading denatured [3H]procollagen and were completely inhibited by leupeptin and pepstatin. To demonstrate directly that human lung fibroblasts can translocate a portion of their defective collagen to lysosomes, cultured cells were incubated with cis-4-hydroxyproline and labeled with [14C]proline to cause the cells to make nonhelical [14C]procollagen. About 3% of the total intracellular hydroxy[14C]proline was found in lysosomes. If, however, the cells were also treated with NH4Cl, an inhibitor of lysosomal function, 18% of the intracellular hydroxy[14C]proline was found in lysosomes. These results demonstrate that cultured human lung fibroblasts induced to make defective collagen are capable of shunting a portion of such collagen to their lysosomes for intracellular degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号