首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free radicals produced during the autoxidation of 3,4-dihydroxyphenylalanine (DOPA) and other catechol(amine)s to melanins have been studied using electron spin resonance spectroscopy. Magnetic parameters for the radical intermediates have been determined, allowing the radicals to be unambiguously identified. Three types of radical are formed: the primary radical from one-electron oxidation of the parent catechol(amine); and two secondary radicals, one formed via OH substitution, the other via cyclization. The formation of these radical species can be linked to molecular products formed during catecholamine oxidation and melanin formation.  相似文献   

2.
Free radicals produced during the autoxidation of 3,4-dihydroxyphenylalanine (DOPA) and other catechol(amine)s to melanins have been studied using electron spin resonance spectroscopy. Magnetic parameters for the radical intermediates have been determined, allowing the radicals to be unambiguously identified. Three types of radical are formed: the primary radical from one-electron oxidation of the parent catechol(amine); and two secondary radicals, one formed via OH- substitution, the other via cyclization. The formation of these radical species can be linked to molecular products formed during catecholamine oxidation and melanin formation.  相似文献   

3.
The oxidation of the phenacetin metabolites p-phenetidine and acetaminophen by peroxidases was investigated. Free radical intermediates from both metabolites were detected using fast-flow ESR spectroscopy. Oxidation of acetaminophen with either lactoperoxidase and hydrogen peroxide or horseradish peroxidase and hydrogen peroxide resulted in the formation of the N-acetyl-4-aminophenoxyl free radical. Totally resolved spectra were obtained and completely analyzed. The radical concentration was dependent on the square root of the enzyme concentration, indicating second-order decay of the radical, as is consistent with its dimerization or disproportionation. The horseradish peroxidase/hydrogen peroxide-catalyzed oxidation of p-phenetidine (4-ethoxyaniline) at pH 7.5-8.5 resulted in the one-electron oxidation products, the 4-ethoxyaniline cation free radical. The ESR spectra were well resolved and could be unambiguously assigned. Again, the enzyme dependence of the radical concentration indicated a second-order decay. The ESR spectrum of the conjugate base of the 4-ethoxyaniline cation radical, the neutral 4-ethoxyphenazyl free radical, was obtained at pH 11-12 by the oxidation of p-phenetidine with potassium permanganate.  相似文献   

4.
Electron spin resonance spectroscopy has been used to demonstrate production of semiquinone free radicals from the oxidation of the catechol estrogens 2- and 4-hydroxyestradiol and 2,6- and 4,6-dihydroxyestradiol. Radicals were generated by horseradish peroxidase/H2O2 or tyrosinase/O2, or by autoxidation, and were detected as their complexes with spin-stabilizing metal ions (Zn2+ and/or Mg2+). Radical production occurs via one- or two-electron oxidation of catechol estrogens, depending on the type of activating system. Autoxidation of catechol estrogens produces superoxide and H2O2 at physiological pH values. The present results also indicate a difference in the reactivity of quinones derived from 2- and 4-hydroxyestradiol. The toxicological significance of these reactions is discussed.  相似文献   

5.
Tyrosinase hydroxylates 3-hydroxyanisole in the 4-position. The reaction product accumulates in the reaction medium with a lag time (tau) which diminishes with increasing concentrations of enzyme and lengthens with increasing concentrations of substrate, thus fulfilling all the predictions of the mechanism proposed by us for 4-hydroxyphenols. The kinetic constants obtained, kcatM = (46.87 +/- 2.06) s-1 and KmM = (5.40 +/- 0.60) mM, are different from those obtained with 4-hydroxyanisole, kcatM = (184.20 +/- 6.1) s-1 and KmM = (0.08 +/- 0.004) mM. The catalytic efficiency, kcatM/KmM is, therefore, 265.3 times greater with 4-hydroxyanisole. The possible rate-determining steps for the reaction mechanism of tyrosinase on 3- and 4-hydroxyanisole, based on the NMR spectra of both monophenols, are discussed. These possible rate-determining steps are the nucleophilic attack of hydroxyl's oxygen on the copper and the electrophilic attack of the peroxide on the aromatic ring. Both steps may be of similar magnitude, i.e. take place in the same time scale.  相似文献   

6.
7.
Free radicals of myoglobins were measured at room temperature with an ESR spectrometer equipped with a flow apparatus. When horse heart MetMb was mixed with an equimolar amount of ethyl hydroperoxide (EtOOH), a well resolved ESR spectrum with 6 lines and a shoulder was observed. It reached a maximum in a few seconds and decayed with a half-life of about 10 s when the final concentrations of MetMb and EtOOH were 200 microM. This decay rate was the same at a MetMb concentration of 50 microM. The maximum molar radical concentration amounted to about half of the total myoglobin. In the case of sperm whale myoglobin, a similar 6-line spectrum reached a maximum in 1 s and decayed with a half-life of a few seconds. In this case, however, a small and poorly resolved doublet spectrum remained, the half-life of which was about 8 min. An effect of O2 on the signal decay was evident for horse heart myoglobin, but not for sperm whale myoglobin.  相似文献   

8.
It has been shown previously that the initial product of mushroom tyrosinase-catalysed oxidation of the monophenol 4-hydroxyanisole (4HA) is 4-methoxy ortho benzoquinone (4-MOB). This study presents evidence that 4-MOB is primarily responsible for the cytotoxicity of 4HA oxidation products in vitro. Equivalent toxicity in a model system was produced by products of tyrosinase catalysed oxidation of 4HA and by synthetic 4-MOB. Cytotoxicity was estimated both by a blebbing assay and by plating efficiency of exposed cells. HPLC analysis of the reaction mixture revealed a positive correlation between cytotoxicity and 4-MOB concentration.  相似文献   

9.
We developed a new technique for directly observing in vivo free radical formation in the circulating blood of living rats using electron spin resonance (ESR) spectrometry without any labeling or trapping agents. It was found that a doublet peak spectrum was obtained following ferric citrate and ascorbic acid injection. The signals were confirmed in different ways to be due to ascorbic acid radicals. These results provide evidence to support the involvement of free radical intermediates in iron-ascorbic acid reactions, and further confirm the suggested mechanisms of both the adverse and protective effects of ascorbic acid in biological systems. Furthermore, this method of direct observation is a new application of ESR spectrometry to living animals.  相似文献   

10.
There is general agreement that free radicals are involved in reperfusion injury. Electron paramagnetic resonance (EPR) spectroscopy can be considered as the more suitable technique to directly measure and characterize free radical generation during myocardial ischemia and reperfusion. There are essentially two approaches used in the detection of unstable reactive species: freezing technique and spin traps. The detection of secondary free radicals or ascorbyl free radicals during reperfusion might provide an index of oxidative stress. Spin trapping can also characterize nitric oxide. EPR spectroscopy can provide important data regarding redox state and free radical metabolism but ideally, the spin traps must not interfere with cell or organism function.  相似文献   

11.
For the first time, the enzymatic one-electron oxidation of several naturally occurring and synthetic water-soluble porphyrins by peroxidases was investigated by ESR and optical spectroscopy. The ESR spectra of the free radical metabolites of the porphyrins were singlets (g = 2.0024, delta H = 2-3 G), which we assigned to their respective porphyrin pi-cation free radicals. Several porphyrins were investigated and ranked by the intensity of their ESR spectra (coproporphyrin III greater than coproporphyrin I greater than deuteroporphyrin IX greater than mesoporphyrin IX greater than Photofrin II greater than protoporphyrin IX greater than uroporphyrin I greater than uroporphyrin III greater than hematoporphyrin IX). The porphyrins were oxidized by several peroxidases (horseradish peroxidase, lactoperoxidase, and myeloperoxidase), yielding the same type of ESR spectra. From these results, we conclude that porphyrins are substrates for peroxidases. The changes in the visible absorbance spectra of the porphyrins during enzymatic oxidation were monitored. The two-electron oxidation product, which was assigned to the dihydroxyporphyrin, was detected as an intermediate of the oxidation process. The optical spectrum of the porphyrin pi-cation free radical was not detected, probably due to its low steady-state concentration.  相似文献   

12.
Summary A free radical signal of 12 G width and g=2.0045 can be observed in hematoxylin stained tissue blocks and sections. The amount of paramagnetic centres in stained specimens is significantly larger than in unstained ones. After alkalization simultaneously with the colour change the former free radical is detectable in hemalum precipitate and on stained paper strips. After solution of the stain in dioxane and alkalization, a well resolved hyperfine structure could be seen which could be assigned to three different radicals with the same g value as observed in the rigid matrix (tissue and paper). Quantitative evaluation of free radical concentration is also carried out for tissue sections.  相似文献   

13.
14.
A free radical signal of 12 G width and g = 2.0045 can be observed in hematoxylin stained tissue blocks and sections. The amount of paramagnetic centres in stained specimens is significantly larger than in unstained ones. After alkalization simultaneously with the colour change the former free radical is detectable in hemalum precipitate and on stained paper strips. After solution of the stain in dioxane and alkalization, a well resolved hyperfine structure could be seen which could be assigned to three different radicals with the same g value as observed in the rigid matrix (tissue and paper). Quantitative evaluation of free radical concentration is also carried out for tissue sections.  相似文献   

15.
The possible metabolic activation of nitrosonaphthols, suspected carcinogens, was investigated by electron spin resonance (ESR) spectroscopy. Free radicals were found to be the primary metabolites formed during both the reduction and oxidation of these compounds. Whereas the one-electron oxidation of nitrosonaphthols is enzymatic and catalyzed by the peroxidase prototype, horseradish peroxidase, their one-electron reduction by reducing cofactors such as NADH or NADPH was not enhanced by rat liver microsomal enzymes. The ESR spectra of the radicals found during the oxidation of nitrosonaphthols were analyzed and characterized as iminoxyl free radicals. The reduction pathway leads to nitroxide free radicals with unusually low nitrogen hyperfine constants.  相似文献   

16.
Electron spin resonance (ESR) spectroscopy, which is the only commonly available method for directly detecting free radicals in biological systems, has now been quite extensively used to study radicals produced by metabolism of xenobiotic chemicals and the interaction of such species with lipid molecules. This review examines a variety of different xenobiotic systems and tissues and summarises the information obtained from these studies, with particular reference to the elucidation of the nature of the radicals involved in the initiation and propagation of lipid peroxidation.  相似文献   

17.
18.
The oxidation of indole-3-acetic acid by horseradish peroxidase was studied using the spin traps t-nitrosobutane and 5,5-dimethyl-1-pyrroline N-oxide to trap free radical intermediates. The major free radical metabolite of indole acetic acid was unambiguously determined by the use of indole-3-[2,2-2H2]acetic acid to be the skatole carbon-centered free radical. In the presence of oxygen, superoxide was also trapped.  相似文献   

19.
Electron spin resonance spectroscopy has been used to demonstrate production of semiquinone-free radicals from the oxidation of the catechol estrogens 2- and 4-hydroxyestradiol and 2,6- and 4,6-dihydroxyestradiol. Radicals were generated either enzymatically (using horseradish peroxidase-H2O2 or tyrosinase-O2) or by autoxidation, and were detected as their complexes with spin-stabilizing metal ions (Zn2+ and/or Mg2+). In the peroxidase system, radicals are produced by one-electron oxidation of the catechol estrogen and their decay is by a second-order pathway, consistent with their disproportionation to quinone and catechol products. With tyrosinase-O2, radical generation occurs indirectly. Initial hydroxylation of phenolic estrogen (at either the 2- or 4-position) gives a catechol estrogen in situ; subsequent two-electron oxidation of the catechol to the quinone, followed by reverse disproportionation, leads to the formation of radicals. A competing mechanism for radical production involves autoxidation of the catechol. Results obtained from the estrogen systems have been compared with those from the model compound 5,6,7,8-tetrahydro-2-naphthol.  相似文献   

20.
Insect cuticles (exuviae; cast skins) were examined for the first time by ESR spectroscopy for the presence of stable free radicals, as found in melanins. All cuticles, except those from a locust albino strain, irrespective of the presence of melanin, provided single-line signals of varied g-values and linewidths. The ESR signals of melanins, isolated or in cuticles, were characterized by g-values <2.004 and small linewidths in the range of 4-6G, while sclerotized cuticles, lacking melanin, showed g-values >2.004 and broad linewidths of 5-11 G. The melanin spectra were comparable to those reported for eumelanins with indol-based monomers. Minor signals ascribed to pheomelanins were found in several probes. The 'sclerotin' spectra were broader and displayed unresolved hyperfine structure in some cases. As for melanins, the location and environment of the radicals in cuticles giving rise to the two types of ESR spectra could not be assigned. Changes in the radical environment due to insecticide or solvent treatment can be detected by ESR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号