首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The neural cell adhesion molecule (NCAM) is a member of the immunoglobulin superfamily. Two of the three major isoforms (NCAM 140 and NCAM 180) are transmembrane glycoproteins, which differ in their intracellular domains. The present study is concerned with the identification of novel intracellular binding partners of NCAM. We expressed and purified both cytoplasmic domains of NCAM. Using ligand affinity chromatography followed by peptide mass fingerprinting, we could identify several novel binding partners of the cytoplasmic domains of NCAM 140 and 180. We present data that alpha- and beta-tubulin as well as alpha-actinin 1 are associated with both NCAM 140 and 180. In contrast, beta-actin, tropomyosin, microtubuli-associated protein MAP 1A, and rhoA-binding kinase-alpha preferentially bind to NCAM 180. Furthermore, we demonstrate that inhibition of rhoA-binding kinase-alpha stimulates neurite outgrowth independently from NCAM.  相似文献   

2.
3.
NCAM140 stimulates integrin-dependent cell migration by ectodomain shedding   总被引:1,自引:0,他引:1  
The neural cell adhesion molecule (NCAM) plays a key role in neural development, regeneration and synaptic plasticity. This study describes a novel function of NCAM140 in stimulating integrin-dependent cell migration. Expression of NCAM140 in rat B35 neuroblastoma cells resulted in increased migration toward the extracellular matrix proteins fibronectin, collagen IV, vitronectin, and laminin. NCAM-potentiated cell migration toward fibronectin was dependent on beta1 integrins and required extracellular-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activity. NCAM140 in B35 neuroblastoma cells was subject to ectodomain cleavage resulting in a 115 kDa soluble fragment released into the media and a 30 kDa cytoplasmic domain fragment remaining in the cell membrane. NCAM140 ectodomain cleavage was stimulated by the tyrosine phosphatase inhibitor pervanadate and inhibited by the broad spectrum metalloprotease inhibitor GM6001, characteristic of a metalloprotease. Moreover, treatment of NCAM140-B35 cells with GM6001 reduced NCAM140-stimulated cell migration toward fibronectin and increased cellular attachment to fibronectin to a small but significant extent. These results suggested that metalloprotease-induced cleavage of NCAM140 from the membrane promotes integrin- and ERK1/2-dependent cell migration to extracellular matrix proteins.  相似文献   

4.
Neural cell adhesion molecules (NCAMs) are cell surface glycoproteins that appear to mediate cell-cell adhesion. In vertebrates NCAMs exist in at least three different polypeptide forms of apparent molecular masses 180, 140, and 120 kD. The 180- and 140-kD forms span the plasma membrane whereas the 120-kD form lacks a transmembrane region. In this study, we report the isolation of NCAM clones from an adult rat brain cDNA library. Sequence analysis indicated that the longest isolate, pR18, contains a 2,574 nucleotide open reading frame flanked by 208 bases of 5' and 409 bases of 3' untranslated sequence. The predicted polypeptide encoded by clone pR18 contains a single membrane-spanning region and a small cytoplasmic domain (120 amino acids), suggesting that it codes for a full-length 140-kD NCAM form. In Northern analysis, probes derived from 5' sequences of pR18, which presumably code for extracellular portions of the molecule hybridized to five discrete mRNA size classes (7.4, 6.7, 5.2, 4.3, and 2.9 kb) in adult rat brain but not to liver or muscle RNA. However, the 5.2- and 2.9-kb mRNA size classes did not hybridize to either a large restriction fragment or three oligonucleotides derived from the putative transmembrane coding region and regions that lie 3' to it. The 3' probes did hybridize to the 7.4-, 6.7-, and 4.3-kb message size classes. These combined results indicate that clone pR18 is derived from either the 7.4-, 6.7-, or 4.3-kb adult rat brain RNA size class. Comparison with chicken and mouse NCAM cDNA sequences suggests that pR18 represents the amino acid coding region of the 6.7- or 4.3-kb mRNA. The isolation of pR18, the first cDNA that contains the complete coding sequence of an NCAM polypeptide, unambiguously demonstrates the predicted linear amino acid sequence of this probable rat 140-kD polypeptide. This cDNA also contains a 30-base pair segment not found in NCAM cDNAs isolated from other species. The significance of this segment and other structural features of the 140-kD form of NCAM can now be studied.  相似文献   

5.
Epidermal growth factor- (EGF) dependent tyrosine phosphorylation of the EGF receptor was inhibited by the exogenous addition of GM3 to a membrane preparation and to purified EGF receptor adsorbed to antireceptor-antibody-Sepharose (Bremer, E. G., Schlessinger, J., and Hakomori, S. (1986) J. Biol. Chem. 261, 2434-2440). A specific functional correlation between GM3 and EGF receptor function has been further assessed in this study, employing two variant clones of A431 cells showing completely different growth responses to EGF. The A1S clone showed EGF cell growth stimulation and contained GM3 whereas the A5I clone, whose growth was completely inhibited by EGF addition, lacked detectable GM3. Both the endogenous and EGF-dependent receptor tyrosine-kinase activities were low in the A1S clone and were only minimally inhibited by the exogenous addition of GM3. In contrast the EGF receptor kinase activity in A5I cells was much higher and was more strongly inhibited by GM3 than it was in A1S cells. The EGF receptor fraction prepared from A1S cells, eluted from an anti-EGF receptor antibody-Sepharose column, contained GM3, in contrast to the fraction prepared from A5I cells, which lacked detectable GM3. The receptor kinase activity in vitro was greatly influenced by detergent and ATP concentration. GM3 affected the receptor kinase in a biphasic manner, i.e. GM3 was inhibitory at a low concentration of detergent under a physiological concentration of ATP and stimulatory at a high concentration of detergent. In contrast lyso-GM3 displayed a monophasic inhibitory effect under a wide range of detergent concentrations. Lyso-CDH (lactosylsphingosine) had no detectable effect on the receptor kinase activity. The presence of a small quantity of lyso-GM3 in A431 cells was detected after DEAE-Sepharose chromatography followed by high performance liquid chromatography in a n-propanolyl alcohol-ammonia system. It is possible that de-N-fatty acylation of gangliosides could be an effective means to modulate EGF receptor function in membranes.  相似文献   

6.
E10 chick sympathetic ganglion cells display a cell contact-dependent rise in choline acetyltransferase (ChAT) specific activity over the first several days in culture. This effect can be mimicked by addition of crude membrane fractions prepared from E10 retina and adult chicken brain, but not by those from E10 brain. The effects of both cell-cell and membrane-cell contact are inhibited by the addition of anti-NCAM Fab fragments. The membranes capable of increasing ChAT and those which are ineffective all contain NCAM, however their relative levels of NCAM polysialic acid differ. Whereas membranes with high polysialic acid NCAM are ineffective, selective enzymatic removal of polysialic acid renders them capable of producing an increase in ChAT. The inhibition of NCAM-mediated adhesion produced by Fab fragments can be compensated for by addition of wheat germ agglutinin, but only with membranes whose NCAM has low levels of polysialic acid. Taken together, these data suggest that NCAM can regulate cell contact-mediated increases in ChAT activity. We propose that NCAM-mediated adhesion promotes contact between cell membranes to allow the transmission of an otherwise NCAM-independent signal. In addition, NCAM's polysialic acid moiety appears to influence the ability of cells to transmit this signal, even in the presence of an alternative adhesion mechanism.  相似文献   

7.
Several clonal sublines of HCT-116 human colon adenocarcinoma cells were isolated and characterized on the basis of their growth characteristics, intrinsic enterocyte-like differentiation (as assessed by alkaline phosphatase and lactase activities), and responses to butyrate, an inducer of colon tumor cell maturation. The HCT-116 sublines were found to be heterogeneous and several phenotypically distinct clones were identified. Further characterization of these clones indicated that the effects of butyrate on cell growth, alkaline phosphatase activity, and lactase activity were distinct and separable. The growth of all of the clones were inhibited by butyrate (IC50 values varied from 0.44 to 1.5 mM), but the effects of this agent on alkaline phosphatase and lactase activities varied widely. In several sublines butyrate had no effect on either enzyme while in others one or both activities were induced. Additionally, the binding of 125I-epidermal growth factor (EGF) to cell surface receptors was found to be proportional to the expression of lactase activity in the cell. The D3 clone and other sublines with intrinsic lactase activities greater than 100 nmol/mg/min expressed a class of high-affinity EGF receptors (e.g., D3 cells had 3.48 X 10(4) EGF receptors/cell with a kd of 0.61 nM). Other clones with less lactase activity had undetectable levels of 125I-EGF binding. In clones which exhibited greater than twofold increases in lactase activity in response to butyrate, the expression of a large number of low-affinity EGF receptors was also induced. In one such clone, the P1 subline, lactase activity was increased from 70 nmol/mg/min to 230 nmol/mg/min after 96 h in 2 mM butyrate, and the expression of EGF receptors was increased from undetectable levels to 1.18 X 10(5) EGF receptors/cell (kd of 3.2 nM). Northern blot analysis indicated that the increased 125I-EGF binding after butyrate treatment may have been due, in part, to a greater than twofold accumulation of EGF receptor mRNA. In addition, the expression of the messages for transforming growth factor alpha (TGF-alpha) and transforming growth factor beta (TGF-beta) was examined in butyrate-treated cells. While TGF-alpha mRNA levels were found to correlate with EGF receptor message levels in the HCT-116 clones, TGF-beta mRNA expression was not found to correlate with the butyrate-induced growth inhibition or with increases in EGF receptor expression, alkaline phosphatase activity, or lactase activity in these cells.  相似文献   

8.
The MDA-468 human breast cancer cell line displays the unusual phenomenon of growth inhibition in response to pharmacological concentrations of EGF. This study was initiated with the objective of elucidating the cellular mechanisms involved in EGF-induced growth inhibition. Following EGF treatment the percentage of MDA-468 cells in G1 phase increased, together with a concomitant depletion in S and G2/M phase populations, as revealed by flow cytometry of DNA content. The apparent G1 block in the cell cycle was confirmed by treating the cells with vinblastine. DNA synthesis was reduced to about 35% of that measured in control, untreated cells after 48 h of EGF treatment, as measured by the incorporation of [3H]thymidine. DNA synthesis returned to normal following the removal of EGF from the growth-arrested cells. In order to locate the EGF-induced event responsible for the G1 arrest more precisely, we examined the expression of certain cell cycle-dependent genes by Northern blot analysis. EGF treatment did not alter either the induction of the early G1 marker, c-myc, or the expression of the late G1 markers, proliferating cell nuclear antigen, and thymidine kinase. However, EGF-treated cells revealed down regulation of p53 and histone 3.2 expression, which are expressed at the G1/S boundary and in S phase, respectively. These results indicate that EGF-induced growth inhibition in MDA-468 human breast cancer cells is characterized by a reversible cell cycle block at the G1/S boundary.  相似文献   

9.
The neural cell adhesion molecule (NCAM) is implicated in important functions during development and maintenance of the nervous system. Two of the three major isoforms, NCAM 140 and NCAM 180, are transmembrane glycoproteins with large cytoplasmic domains of different length. The purpose of this study was to identify novel intracellular binding partners of NCAM 140 and NCAM 180. We expressed both cytoplasmic domains, as well as cytoplasmic fragments of NCAM, as fusion proteins in Escherichia coli and used them for ligand affinity chromatography or glutathione S-transferase (GST) pull-down assays. By peptide mass fingerprinting Western blot analysis, or both, we identified PLCgamma, LANP, syndapin, PP1, and PP2A as binding partners for both NCAM 140 and NCAM 180, whereas TOAD-64 was identified as a NCAM 180-specific interacting protein. Furthermore, we were able to show that binding of these novel binding proteins, as well as the previously described interaction partners ROK alpha (rho A binding kinase alpha) and alpha- and beta-tubulin, bind to specific cytosolic sequences of NCAM. For this purpose, we performed GST pull-down experiments using cytosolic fragments of NCAM as GST-fusion proteins and cytosolic- or cytoskeleton-enriched protein fractions of rat brain.  相似文献   

10.
In hippocampal neurons and transfected CHO cells, neural cell adhesion molecule (NCAM) 120, NCAM140, and NCAM180 form Triton X-100-insoluble complexes with betaI spectrin. Heteromeric spectrin (alphaIbetaI) binds to the intracellular domain of NCAM180, and isolated spectrin subunits bind to both NCAM180 and NCAM140, as does the betaI spectrin fragment encompassing second and third spectrin repeats (betaI2-3). In NCAM120-transfected cells, betaI spectrin is detectable predominantly in lipid rafts. Treatment of cells with methyl-beta-cyclodextrin disrupts the NCAM120-spectrin complex, implicating lipid rafts as a platform linking NCAM120 and spectrin. NCAM140/NCAM180-betaI spectrin complexes do not depend on raft integrity and are located both in rafts and raft-free membrane domains. PKCbeta2 forms detergent-insoluble complexes with NCAM140/NCAM180 and spectrin. Activation of NCAM enhances the formation of NCAM140/NCAM180-spectrin-PKCbeta2 complexes and results in their redistribution to lipid rafts. The complex is disrupted by the expression of dominant-negative betaI2-3, which impairs binding of spectrin to NCAM, implicating spectrin as the bridge between PKCbeta2 and NCAM140 or NCAM180. Redistribution of PKCbeta2 to NCAM-spectrin complexes is also blocked by a specific fibroblast growth factor receptor inhibitor. Furthermore, transfection with betaI2-3 inhibits NCAM-induced neurite outgrowth, showing that formation of the NCAM-spectrin-PKCbeta2 complex is necessary for NCAM-mediated neurite outgrowth.  相似文献   

11.
12.
Laminin-2 (LN-2, alpha2beta1gamma1) is a basement membrane-associated laminin isoform usually considered in the context of muscle and nerve tissues. To test the hypothesis that LN-2 can additionally modulate epithelial cell biology, an analysis of the role of LN-2 in cell adhesion, activation of signalling intermediates and proliferation was undertaken. A virally transformed human conjunctival epithelial cell line (HC0597) was utilized in this study. Adhesion assays using function-inhibiting antibodies demonstrated that alpha3beta1 integrin is essential for the rapid attachment of conjunctival epithelial cells to LN-2. Bromodeoxyuridine (BrdU) incorporation analyses revealed that, compared with LN-1 or LN-10, LN-2 significantly promotes epithelial proliferation. Phosphorylation of the signalling intermediates Erk1/2 and Akt-1 was observed within 15 min of cell adhesion to LN-2. Inhibiting alpha3beta1 integrin function decreased total cellular phosphotyrosine levels, specifically inhibited phosphorylation of Erk1/2 and Akt-1, and dampened the proliferation response of epithelial cells adherent to LN-2. Inhibition of Erk or Akt activation inhibited cell proliferation in a dose-dependent manner. However, the inhibition of Erk resulted in a stronger suppression of proliferation compared with Akt inhibition. From these results, it is concluded that human conjunctival epithelial cells adhere to immobilized LN-2 using alpha3beta1 integrin. alpha3beta1 integrin/LN-2 signalling, transduced primarily through an Erk pathway, enhances epithelial cell proliferation. These results demonstrate that LN-2 can impact on epithelial cell biology in addition to nerve and muscle, and provide information regarding the role of this isoform in ocular surface epithelial cells.  相似文献   

13.
14.
The site of action of growth factors on mammalian cell cycle has been assigned to the boundary between the G1 and S phases. We show here that Epidermal Growth Factor (EGF) is also required for mitosis. BaF/3 cells expressing the EGFR (BaF/wtEGFR) synthesize DNA in response to EGF, but arrest in S-phase. We have generated a cell line (BaF/ERX) with defective downregulation of the EGFR and sustained activation of EGFR signalling pathways: these cells undergo mitosis in an EGF-dependent manner. The transit of BaF/ERX cells through G2/M strictly requires activation of EGFR and is abolished by AG1478. This phenotype is mimicked by co-expression of ErbB2 in BaF/wtEGFR cells, and abolished by inhibition of the EGFR kinase, suggesting that sustained signalling of the EGFR, through impaired downregulation of the EGFR or heterodimerization, is required for completion of the cycle. We have confirmed the role of EGFR signalling in the G2/M phase of the cell cycle using a human tumor cell line which overexpresses the EGFR and is dependent on EGFR signalling for growth. These findings unmask an EGF-sensitive checkpoint, helping to understand the link between sustained EGFR signalling, proliferation and the acquisition of a radioresistant phenotype in cancer cells.  相似文献   

15.
16.
Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components.  相似文献   

17.
EGF induces cell cycle arrest of A431 human epidermoid carcinoma cells   总被引:4,自引:0,他引:4  
The human carcinoma cell line A431 is unusual in that physiologic concentrations of epidermal growth factor (EGF) inhibit proliferation. In the presence of 5-10 nM EGF proliferation of A431 cells is abruptly and markedly decreased compared to the untreated control cultures, with little loss of cell viability over a 4-day period. This study was initiated to examine how EGF affects the progression of A431 cells through the cell cycle. Flow cytometric analysis of DNA in EGF-treated cells reveals a marked change in the cell cycle distribution. The percentage of cells in late S/G2 increases and early S phase is nearly depleted. Since addition of the mitotic inhibitor vinblastine causes accumulation of cells in mitosis and prevents reentry of cells into G1, it is possible to distinguish between slow progression through G1 and G2 and blocks in those phases. When control cells, not treated with EGF, are exposed to vinblastine, the cells accumulate mitotic figures, as expected, and show progression into S, thus diminishing the number of cells in G1. In contrast, no mitotic figures are found among the EGF-treated cells in the presence or absence of vinblastine, and progression from G1 into S is not observed, as the number of cells in G1 remains constant. These results suggest that there are two EGF-induced blocks in cell cycle transversal; one is in late S and/or G2, blocking entry into mitosis, and the other is in G1, blocking entry into S phase. After 24 hours of EGF treatment, DNA synthesis is reduced to less than 10% compared to untreated controls as measured by the incorporation of [3H]thymidine or BrdU. In contrast, protein synthesis is inhibited by about twofold. Although inhibition of protein synthesis is less extensive, it occurs 6 hours prior to an equivalent inhibition of DNA synthesis. The rapid decrease in protein synthesis may result in the subsequent cell cycle arrest which occurs several hours later.  相似文献   

18.
The relation between the concentration of epidermal growth factor (EGF) receptor/kinase and effects of EGF on cell proliferation has been studied using variant A431 cells and antagonist anti-EGF receptor monoclonal antibodies. Clonal A431 cell variants selected for escape from the EGF-mediated growth inhibition of parental A431 cells all have reduced concentrations of EGF receptor/kinase; Harvey sarcoma virus-transformed A431 cells, which have escaped from EGF-mediated growth inhibition, also have reduced EGF receptors. Three clonal variants which have reacquired EGF-mediated growth inhibition have 2- to 4-fold more EGF receptor than their respective parent variant. A biphasic response with stimulation at low and inhibition at high concentrations of EGF was especially evident in revertants of clone 29. Three separate antagonist monoclonal anti-EGF receptor antibodies block the growth inhibitory effects of EGF and uncover EGF-mediated growth stimulation. These studies indicate that in A431 cell variants a continuum of ligand-activated EGF receptors determines proliferative responses from low concentrations of active receptors under basal conditions to intermediate concentrations causing growth stimulation to high concentrations, causing inhibition of cell proliferation.  相似文献   

19.
神经细胞粘附分子结构特征和生理功能   总被引:5,自引:0,他引:5  
神经细胞粘附分子是一类调节细胞与细胞、细胞与细胞外基质间粘附作用的膜表面糖蛋白,主要有NCAM-180、NCAM-140、NCAM-120三种形式,多与PSA结合在一起。在神经系统中,NCAM的表达具有时间和空间特异性,最主要的作用为调节神经系统的可塑性,这种作用可能是通过PSA-NCAM对AMPA的调节作用,主要是通过调节蛋白激酶的表达和细胞内Ca^2 浓度来实现的。  相似文献   

20.
We have analyzed the expression of the intracellular marker protein neuron specific enolase (NSE), synaptophysin (SYN) and of the cell surface marker NCAM (neural cell adhesion molecule) in both normal hypophysis and in pituitary adenomas in order to explore their potential use as diagnostic tools. All adenomas (4 prolactinomas, 3 growth hormone (GH) producing adenomas and 4 inactive adenomas) showed SYN and NSE immunoreactivity on tissue sections and this was confirmed by immunoblots. NCAM 140 (an isoform of NCAM with molecular mass 140 kDa) was detected by immunoblotting in normal human adenohypophysis, in all GH adenomas, and in three out of four inactive adenomas, but not in prolactinomas. Using highly sensitive techniques, NCAM immunoreactivity was observed by electron microscopy in all adenomas. These data indicate that NCAM 140 is a constituent of the cell surface of endocrine cells in both normal human adenohypophysis and its tumors. Since prolactinomas express very low levels of NCAM 140 compared to other hypophyseal tumors its virtual absence could be used for differential diagnosis. A combined analysis of NCAM, SYN and NSE could be useful to characterize inactive adenomas which are not immunoreactive for pituitary hormones and which may contain no or only low levels of the alpha chain of the glycoprotein hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号