首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four mouse hybridomas specific for alpha(1----6)dextran, 16.4.12E (IgA kappa, C57BL/6), 28.4.10A (IgM kappa, BALB/c), 35.8.2H (IgG1 kappa, BALB/c), and 36.1.2D (IgM kappa, BALB/c) were obtained by immunization with the T-dependent Ag isomaltohexaose or isomaltotriose coupled to keyhole limpet hemocyanin or to BSA. Immunochemical characterization of the hybridoma antibodies showed that 16.4.12E and 36.1.2D had cavity-type combining sites, recognizing the terminal non-reducing end of alpha(1----6)dextran, whereas 28.4.10A and 35.8.2H had groove-type sites, recognizing internal linear segments of the dextran. The V region cDNA of the H and L chains of the antibodies were cloned and sequenced. VH of 16.4.12E and VH of 36.1.2D belonged to the X24 and Q52 germ-line gene families, respectively. The VH and V kappa sequences of 16.4.12E and V kappa sequence of 36.1.2D were highly homologous to those of W3129, the only anti-alpha(1----6)dextran mAb with a cavity-type site thus far sequenced; 16.4.12E differed from W3129 in the D, JH, and J kappa. VH genes of 28.4.10A and 35.8.2H were homologous to those of several anti-alpha(1----6)dextrans with groove-type sites, but belonged to the J558 germ-line gene family, differed from the other J558 anti-alpha(1----6)dextrans, probably representing a different germ-line subfamily. The L chain sequence of 28.4.10A encoded by V kappa-Ars and J kappa 2 was almost identical to other groove-type anti-alpha(1----6)dextrans obtained by immunizing with the T-independent glycolipid Ag, stearyl-isomaltotetraose. Use of T-dependent Ag such as isomaltosyl oligosaccharide-protein conjugates provides an additional parameter for probing the fine structure of antibody combining sites and evaluating the V-gene repertoire of anti-alpha(1----6)dextrans.  相似文献   

2.
Monoclonal antibodies to alpha(1----6)dextrans produced in mice immunized with the T-independent antigens alpha(1----6)dextran or the stearylisomaltosyl oligosaccharides have been characterized immunochemically. To correlate the immunochemical properties of these monoclonal antibodies with their primary structure, we have sequenced the variable (V) regions of the light (L) and heavy (H) chains. Three V kappa germ-line genes belonging to two major gene families were used; differential J usages also contribute to diversity. Five different VH germ-line genes belonging to three major VH families were used. The VH genes were further modified by junctional diversity and differential J usage and possibly by somatic mutations. The effects of these modifications on the fine specificities of anti-alpha(1----6)dextrans are discussed. Thus far, six different combinations of VLJL-VH(D)JH chains that form groove-type combining sites specific for alpha(1----6)dextran have been found. We conclude that entirely different VL and VH can form combining sites specific for the internal linear sequence of alpha(1----6)dextran.  相似文献   

3.
This is the first report of an immunochemical study of the combining site specificities of a set of monoclonal antibodies to dextran B512 from C57BL/6J mice. The results confirm previous observations on antidextran combining sites and reveal specificities not seen earlier extending the observed repertoire of antibody combining sites to the single alpha (1----6)-linked glucosyl antigenic determinant. Eight C57BL/6J anti-dextran B512 hybridomas, four IgM,kappa and four IgA,kappa, were produced by PEG fusion of immune spleen cells with the nonproducer myeloma cell line P3X63Ag8 6.5.3. Antibody combining site specificities were determined by quantitative precipitin assays with 14 dextrans. Native dextrans with high percentages of linear alpha (1----6)-linked glucoses, similar to the immunogen B512, were the best precipitinogens; dextrans with alternating alpha (1----3), alpha (1----6) linkages, and highly branched dextrans were less effective. All antibodies precipitated with a synthetic, unbranched alpha (1----6)-linked dextran, suggesting their combining sites were "groove-like" and directed toward internal sequences of alpha (1----6)-linked residues, rather than "cavity-like" and directed toward a nonreducing terminal glucose. Two of the IgA hybridomas gave biphasic precipitin curves with dextran B512; this was shown to be due to differences in the precipitability of IgA monomers and polymers. Differences were observed in the reactivities of several dextrans considered previously to be structurally similar, and a newly proposed structural model of dextran B1299S was assessed. Quantitative precipitin inhibition studies with alpha (1----6)-linked isomaltosyl (IM) oligosaccharides, IM2 to IM9, showed that maximum inhibition was reached with IM6 or IM7, consistent with earlier estimates of the upper limit for the sizes of anti-B512 combining sites. Two IgM hybridomas showed a unique pattern, with inhibition being obtained only with IM5 or larger IM oligosaccharides. Association constants of the antidextrans for dextran B512 and for IM7, determined by affinity gel electrophoresis, ranged from 10(2) to 10(4) ml/g, comparable to earlier findings with antidextrans and other anticarbohydrate antibodies.  相似文献   

4.
Nine groove-type mAb to alpha(1----6)dextran were cloned and sequenced. Together with previous reports from this laboratory, the VH and VL of 34 mAb have been sequenced, in which 10 VH19.1.2 and 11 VH9.14.7 combined with the V kappa-Ox1 gene to form two major families of anti-alpha(1----6)dextrans. The same D minigene (DFL16) was used by all VH19.1.2 and VH9.14.7 mAb; however, the patterns of JH and J kappa usage are quite different. VH19.1.2 mAb used only JH3 and J kappa 2, whereas VH9.14.7 mAb used three JH (JH1, JH2, and JH3) and all four active J kappa (J kappa 1, J kappa 2, J kappa 4, and J kappa 5). Relative uniformity in the lengths of VH CDR3 and the junctional sequences is seen in both families. Some mAb from different mouse strains share common structural features. The differences in idiotypic specificities and in the amino acid sequences suggest that VH19.1.2 and VH9.14.7 may differ in the conformation of CDR1 and CDR2. Combining with V kappa-Ox1 gene to generate groove-type combining sites to the single site-filling epitope of alpha(1----6)dextran, the two VH chains may require certain conformations of CDR3. Whether such conformational requirements influence the choice of J minigenes, the selection of the length of VH CDR3 and the sequences at junctions, are discussed.  相似文献   

5.
The variable region sequences of light and heavy chains of three hybridoma antibodies to alpha (1----6) dextran, two from BALB/c and one from C57BL/6 mice, were determined by cloning and sequencing their cDNA. The three kappa-light chains are identical in nucleotide and amino acid sequences, except for the use of different J by BALB/c and C57BL/6; all three had the germ-line sequence of antibodies to 2-phenyloxazolone (20). Nevertheless, 2-phenyloxazolone BSA did not cross-react in gel with antidextrans, nor did dextran react with anti-2-phenyloxazolone ascitic fluids. The heavy chains differed, the BALB/c hybridomas having only three amino acid differences in CDR2 and two in CDR3; the C57BL/6 hybridoma differed throughout the variable region. All three VH are members of the J558 family. The three identical V kappa sequences suggest a significant role in dextran binding, with the differences in CDR of VH and the various J mini-genes of VL and VH being responsible for only fine differences in specificity. Alternatively, the role of V kappa might be minor, with most of the complementarity ascribable to VH. Additional sequences are needed to evaluate whether these data are typical of the repertoire of anti-alpha (1----6) dextran-combining sites.  相似文献   

6.
The VK1GAC light chain represents the dominant V kappa structure employed in the antibody response of A/J mice to streptococcal group A carbohydrate ( GAC ). Two anti-idiotypic antisera, anti- Id5 and anti- Id20 , with specificity for the VK1GAC light chain were used to examine anti- GAC antibody responses in a series of inbred mouse strains that differ at the heavy chain constant region ( IgCH ) allotype locus. Both idiotypes were expressed in normal and immune sera from mice of most IgCH allotypes, except IgCHb (C57BL/6J) and IgCHf (CE/J). C57BL/6J mice expressed Id5 , but not Id20 , whereas CE/J mice did not express either idiotype. Testing of recombinant inbred strains between BALB/c and C57BL/6 indicated that the pattern of idiotype expression did not correlate with IgCH allotype. The C X B recombinants expressed all three idiotype patterns that were observed in the panel of inbred strains. Testing of allotype congenic mice between BALB/c and C57BL/6 showed that CB.20 and BC.8 mice were Id20 -, whereas BAB-14 mice were Id20 +, indicating that both VH and background (V kappa or regulatory) loci must be derived from BALB/c to obtain Id20 expression. The difference in the frequency of idiotype expression observed between BALB/c and BAB-14 mice indicates that the IgCH locus may exert a quantitative influence on the expression of this light chain. To examine the Id20 -, Id5 + antibodies of C57BL/6 mice, anti- GAC hybridomas were prepared. Of 16 C57BL/6-derived anti- GAC monoclonal antibodies, six were reactive with anti- Id5 and not with anti- Id20 . Isoelectric focusing of the purified kappa light chains from three of these antibodies revealed two distinct spectrotypes that co-migrated with the two known VK1GAC spectrotypes observed with A/J anti- GAC light chains. Idiotypic analysis of in vitro recombinants between the heavy and light chains of A/J and C57BL/6 monoclonal antibodies demonstrated that the C57BL/6 light chains were idiotypically similar to A/J light chains when they were free in solution or paired with A/J heavy chains. These results demonstrate that C57BL/6 mice can express a light chain that is very similar, if not identical, to the VK1GAC light chain, although the light chain is expressed in lower frequency and is paired with a distinct VH structure, which can mask expression of one of the VK1GAC idiotypes. These effects on V kappa expression map to at least three genetic loci: VH, CH, and an unlinked locus.  相似文献   

7.
An idiotype defined by mAb and polyclonal antibodies to 10.16.1, an anti-alpha(1----6) dextran was previously reported to be expressed on most BALB/c anti-alpha(1----6)dextrans with groove-type sites and to involved CDR3 and probably CDR2. By comparing amino acid sequences of VH and VL derived from cDNA of idiotype+ and idiotype- anti-alpha(1----6)dextran hybridoma proteins, an idiotope was assigned to VH CDR2. Substitution of phenylalanine for leucine at residue 52 in CDR2 coupled with amino acid changes at either residue 58 or residues 57 and 60 abolished expression of this idiotype without affecting Ag binding.  相似文献   

8.
The cDNA for H and L chain V regions of two anti-Z-DNA mAb, Z22 and Z44, were cloned and sequenced. These are the first experimentally induced anti-nucleic acid antibody sequences available for comparison with autoantibody sequences. Z22 and Z44 are IgG2b and IgG2a antibodies from C57BL/6 mice. They recognize different facets of the Z-DNA structure. They both use VH10 family genes and share 95% sequence base sequence identity in the VH and leader sequences; however, they differ in the 5'-untranslated region of the VH mRNA, indicating they arise from different germline genes. Both use JH4 segments. They differ from each other very extensively in the CDR3 of both H and L chains. The most closely related H chains in the current GenBank/EMBL data base are two mouse IgG anti-DNA autoantibodies, one from an MRL-lpr/lpr mouse (MRL-DNA4) and one from an NZB/NZW mouse (BV04-01). Z22 and Z44 share 95% sequence identity with these antibodies in the VH segment. In addition, Z22 is identical to MRL-DNA4 at 91% of the positions in the 5'-untranslated region of the H chain mRNA. The two antibodies share 95% base sequence identity in the V kappa segment. The most closely related L chains, with 97 to 98% sequence identity, are the V kappa 10b germline gene for Z22 and the V kappa 10a germ line gene, which is associated with A/J anti-arsonate antibodies and BALB/c anti-ABO blood group substance antibodies, for Z44. Z22 and Z44 share several structural features (similarities in VH, JH, and V kappa) but differ very markedly in the L chain CDR1 and both H and L chain CDR3 sequences; these regions may determine the differences in their specific interactions with Z-DNA.  相似文献   

9.
Five murine A/J strain anti-digoxin mAb (35-20, 40-40, 40-120, 40-140, and 40-160) have highly homologous H and L chain V regions, only differing by somatic mutation, yet differ in affinity and specificity. The availability of the VH and VL genomic clones from one hybridoma, 40-140, has now allowed studies involving in vitro mutagenesis and chain recombination among these five hybridomas. To determine the relative contributions of the mutations found in either VH or VL to the overall binding properties of these antibodies, we recombined the 40-140VH with the VL of each hybridoma. The 40-140VH gene was transfected into hybridoma variants that produce only VL. The recombinant antibodies show that the mutations present in VH, rather than in VL, affect the fine specificity properties of these antibodies, whereas, the mutations among both VH and VL chains are important in determining antigen affinity. From mutations present in VH that affect fine specificity properties, the comparison of the antibody sequences, and from the previously measured binding properties, we predicted and tested selected VH mutations for their ability to alter specificity or affinity by doing site-directed in vitro mutagenesis. The results for the somatic mutations found in this group of antibodies show: 1) VH mutations control the fine specificity properties that distinguish different members of this group; 2) in particular, VH residues 54 and 55 in CDR2 control the distinguishing characteristics of specificities between these antibodies; and 3) by mutagenesis, we had the unusual result of being able to alter Ag specificity without affecting affinity. A computer model of the 40-140 antibody binding site was generated which indicates that VH residues 54 and 55 are highly accessible.  相似文献   

10.
BALB/c mice immunized with phosphocholine-conjugated keyhole limpet hemocyanin respond with two major groups of antibodies that differ with respect to fine specificity and idiotype. Group I antibodies predominantly bear the T15 idiotype, and show appreciable affinity for the haptens PC and nitrophenyl PC (NPPC), whereas group II antibodies have appreciable affinity for NPPC only and are T15 idiotype negative. Previous studies indicated that group II binding characteristics may derive from the use of novel V gene segments not observed in group I antibodies. To determine the nature of VH gene usage in the group II antibody response, we examined the VH region of a prototype group II hybridoma, PCG1-1. The nucleotide sequence obtained from the VDJ region indicates that PCG1-1 utilizes a VH gene not observed in the group I response, one that belongs to the Q52 VH family. The PCG1-1 VH nucleotide sequence shares 97% identity with the myeloma M141 VH gene. In addition, PCG1-1 utilizes a D segment most closely related to DSP2.6 rearranged to JH-3. These data indicate that M141, a VH gene not seen in group I anti-PC antibodies is utilized by PCG1-1 to generate a PC-protein-binding group II antibody. PCG1-1 was previously shown to express the V kappa 1-3 light chain, a characteristic shared by several group II hybridomas. Furthermore, here we examined the VH gene rearrangements in four lambda 1-bearing group II hybridomas that share a common JH rearrangement with PCG1-1 by Southern blot analysis. A VH-specific probe that detects M141 VH rearrangements revealed that all four lambda 1 hybridomas as well as PCG1-1 share an identical VH gene rearrangement to JH-3. Thus the M141 VH gene product is able to utilize two distinct light chains to generate group II-like combining sites.  相似文献   

11.
A total of 37 mAb with reactivity for dextran B512 have been studied; 30 of them were products of independent rearrangements and 21 made use of the same VH gene, the VHB512 gene. These results unambiguously established that the immune response to dextran in the high responder mouse strain C57BL/6 was restricted. Idiotypic determinants are located all over the Ig V region. Many but not all Id described so far can be ascribed to protein structures encoded by VH or VL gene segments. The expression of the major Id, 17-9 Id, in C57BL/6 was not absolutely correlated with the expression of the dominant VHB512 gene in the same mouse strain. Inspection of amino acid sequences of the CDR3 of idiotypic positive and negative clones suggested that idiotypic structures may be associated with the expression of Tyr at position 95 and Phe or Leu at position 96 in the H and L chains, respectively. Therefore the indiscriminate use of idiotypic markers to characterize VH genes and the relevance of idiotypic regulation in VH gene expression are questioned. Id-positive and Id-negative clones displayed similar affinity values for dextran, indicating that idiotypic and binding structures were probably separated. The exchange of Asp65 for Gly65 in one of the clones reduced affinity for dextran, suggesting the involvement of CDR2 in dextran binding. The dominant expression of VH genes can be explained by somatic and/or genetic mechanisms. Because somatic mechanisms such as idiotypic regulation or selection based on affinity for dextran did not seem to influence the expression of the VHB512 gene we favor a genetic alternative. We discuss a model based on the distance between VH genes and D and JH elements. This model is compatible with somatic and genetic regulation in other systems and provides a new theoretical approach to the understanding of immune VH dominance and low responsiveness.  相似文献   

12.
Structural and serologic studies on murine A/J monoclonal anti-arsonate antibodies resulted in the identification of a second idiotype family (Id36-60) in addition to the predominant idiotype family (IdCR). Id36-60, unlike IdCR, is a dominant idiotype in the BALB/c strain but is a "minor" idiotype in the A/J strain. The complete heavy and light chain variable region (VH and VL) amino acid sequences of a representative Id36-60 hybridoma protein from both the A/J and BALB/c strains have been determined. There are only four amino acid sequence differences between the VH of antibody 36-60 (A/J) and antibody 1210.7 (BALB/c). Two of these differences arise from single nucleotide changes in which the A/J and BALB/c Id36-60 VH germline gene sequences differ. The two other differences are the result of somatic mutation in hybridoma protein 36-60. In addition, Id36-60 heavy chains employ the same D and JH3 segments in both strains. The entire Vk2 VL of 36-60 and 1210.7 differ by only two amino acids, suggesting that like the heavy chains, they are derived from highly homologous VL genes. The same Jk segment is used in both antibodies. A comparison of the amino acid sequence data from Id36-60-bearing hybridomas suggests that a heavy chain amino acid difference accounts for the diminished arsonate binding by the 1210.7 hybridoma protein. Because the 1210.7 heavy chain is the unmutated product of the BALB/c VH gene, somatic mutation in VH may be required to enhance Ars affinity in this system.  相似文献   

13.
Allotype Ighb congenic C.B20 mice when immunized with dextran B1355S are unable to produce anti-alpha (1----3) dextran antibodies that express the VH-associated cross-reactive IdX idiotype. This intrastrain-specific idiotype is normally associated only with the anti-dextran response of Igha mice of which BALB/c is a prototype strain. In this study we have obtained monoclonal hybridoma antibodies specific for the alpha (1----3) glucosidic linkage of dextran from C.B20 mice that were presensitized with rabbit anti-IdX antibodies. These antibodies display the light chain isotype distribution, the H chain amino terminal sequence, share VH-associated IdX idiotypic determinants, and finally the similar fine specificity for dextrans observed for anti-alpha (1----3) dextran antibodies of BALB/c mice.  相似文献   

14.
T15i knockin (KI) mice express a H chain that is encoded by a rearranged T15 VDJ transgene which has been inserted into the J(H) region of chromosome 12. This T15H chain combines with a kappa22-33 L chain to produce a T15-Id+ Ab having specificity for phosphocholine (PC). Inasmuch as T15-Id+ Abs dominate the primary immune response to PC in normal mice, it was surprising to find that 80% of the PC-dextran-binding B cells in unimmunized homozygous T15i KI mice were T15-Id-. Analysis of L chains expressed in these T15-Id-, PC-specific B cells revealed that two L chains, kappa8-28 and kappa19-15, were expressed in this population. The V(kappa) region of these L chains was recombined to J(kappa)5, which is typical of L chains present in PC-specific Abs. When T15i KI mice were immunized with PC Ag, T15-Id+ B cells expanded 6-fold and differentiated into Ab-secreting cells. There was no indication that the T15-Id- B cells either proliferated or differentiated into Ab-secreting cells following immunization. Thus, T15-Id- B cells dominate the PC-binding population, but they fail to compete with T15-Id+ B cells during a functional immune response. Structural analysis of T15H:kappa8-28L and T15H:kappa19-15L Abs revealed L chain differences from the kappa22-33 L chain which could account for the lower affinity and/or avidity of these Abs for PC or PC carrier compared with the T15-Id+ T15H:kappa22-33L Ab.  相似文献   

15.
This report includes complete VH and V kappa nucleotide and deduced amino acid sequences of idiotypically cross-reactive monoclonal anti-fluorescein antibodies that differed greater than 10(5)-fold in affinity. High affinity monoclonal antibody 4-4-20 and intermediate affinity antibodies 10-25, 5-14, 9-40, 12-40, and 3-24 utilized greater than or equal to 90% homologous VHIIIC germ-line genes. Extensive D segment length and sequence variability were observed; however, compensatory germ-line JH4 (4-4-20 and 3-24) or JH3 (10-25, 5-14, 9-40, and 12-40) sequence lengths resulted in H chain CDR3 + FR4 to be a constant 18 amino acids. In addition, each antibody and low affinity 3-13 rearranged greater than or equal to 96% homologous V kappa II genes to J kappa 1, except for 10-25 (J kappa 5) and 3-13 (J kappa 4). Resolved crystal structure of complexed fluorescein and 4-4-20 Fab fragments revealed residues HisL27d, TyrL32, ArgL34, SerL91, TrpL96, and TrpH33 acted as hapten contact residues. Antibodies 5-14, 9-40, 12-40, and 3-24 primary structures possessed identical contact residues as 4-4-20 except for the substitution of HisL34 for ArgL34. Thus, ArgL34 was implicated in the increased affinity of monoclonal antibody 4-4-20. Finally, it was difficult to correlate extensive H chain CDR3 residue heterogeneity directly with fluorescein binding and idiotypy.  相似文献   

16.
17.
Antibodies to dextran B512 were raised in various strains of mice and were assayed by a radioimmunoassay procedure. Idiotypic antibodies to the IgA(k) dextran B512 binding myeloma proteins QUPC52 and W3129 of BALB/c origin were prepared in rabbits. After adsorption each antiserum was specific for the immunizing myeloma protein and did not react with hundreds of other myeloma proteins; nonetheless, antibodies to dextran B512 from various strains of mice cross-reacted in these test systems. Of the 2 idiotypes tested, the W3129 idiotype was more universally expressed in different strains of mice. The QUPC52 idiotype was the predominant idiotype in BALB/c anti-dextran B512 antibodies and was found in only a few other inbred strains. Using a battery of congenic and inbred strains, it was shown that the QUPC52 idiotype was controlled by genes linked to the Igh complex locus (chromosome 12) and to the Ig kappa complex locus (chromosome 6). The W3129 idiotype was found in a number of stocks of mice in the genus Mus recently isolated from the wild. The QUPC52 idiotype thus far was found only in inbred mice.  相似文献   

18.
The IgM plaque-forming response to the alpha 1-6 epitope of dextran B512 is linked to the Ig-1 heavy chain allotypes j and b characteristic of CBA and C57BL strains, respectively, and the response typically induces the formation of autoanti-idiotypic antibodies that can distinguish between anti-dextran antibodies of CBA and C57BL origin. Nevertheless, some substrains of Balb/c mice (allotype a) and some Bailey recombinant stains give a PFC response although they do not possess allotypes j or b. The anti-dextran antibodies in these strains lack the idiotypes characteristic of either CBA and C57BL antibodies to dextran, but they possess their own particular idiotype. F1 hybrids between two responder strains possessing different idiotypes on their antibodies against dextran, produce both idiotypes and two different autoanti-idiotypic antibodies. CBA(Ig-1b) mice were high responders to dextran and possessed the idiotype of C57BL, whereas C57BL/6(Ig-1a) mice were low responders. The V(H) recombinant strains BAB.14 and CB-8KN that possess the Ig-1b allotype of C57BL, but have some of the V(H) genes from Balb/c and the rest from C57BL/6 were high responders to dextran, but did not possess the C57BL idiotype, suggesting that the genes determining the response against dextran and the idiotype may have different locations in the heavy chain locus.  相似文献   

19.
The BALB/c myeloma protein ABPC48 binds beta(2-6)-linked fructosans and expresses genes derived from the VHX24 and V kappa 10 gene families. We have selected 30 hybridomas expressing the VHX24 gene family derived from mitogen-stimulated spleen cells of naive BALB/c mice and mice injected at birth with the syngeneic monoclonal anti-ABPC48Id, IDA10. The majority of mAb with kappa L chains uses V kappa 1. Antibodies reacting with IDA10 use both V kappa 10 and V kappa 1. Most of these VHX24+ mAb reacted with one or more members of a limited panel of predominantly polysaccharide Ag that have been previously observed to interact with antibodies expressing the VHX24 gene family. Nucleotide sequencing of selected VH and V kappa genes shows a very low frequency of somatic mutation. The effect of neonatal anti-Id injection on VHX24-V kappa pairing and Id expression is discussed.  相似文献   

20.
We have observed a pattern of inherited idiotype expression in three mouse strains that is unexpected from the genetics of the strains: a dominant idiotype that was expressed at high levels in two parental strains was expressed only at low levels in a heavy chain allotype congenic strain derived from them. In the C3H.SW strain, the antibody response to the class II MHC Ag I-E is of limited diversity, with dominant expression of an idiotype and the V kappa 21 L chain. The C57BL/10 strain expresses the same idiotype at high levels, whereas the CWB/12 strain, which was derived by replacing the Ig H chain Igh-Cj allele of C3H.SW with the Igh-Cb allele derived from C57B1/10, has been found to express little of this dominant idiotype. CWB/12 responds, with titers equal to those of the parental strains, to the I-E epitope responsible for dominant idiotype expression, and it expresses normal V kappa 21 levels; thus deficiencies in epitope-specific responsiveness or in V kappa 21 expression cannot explain the low Id expression in CWB/12. Furthermore, Southern blot analysis of three VH families gave no evidence of recombination within the the VH locus of CWB/12, which was Igh-Vb throughout. Black-cross analysis demonstrated that expression of the dominant idiotype segregated independently of Ig allotype, and was therefore due to genes unlinked to the H chain gene locus. To our knowledge, this pattern of Id expression is unprecedented, and indicates the need for caution in the interpretation of studies using allotype congenic strains. It also demonstrates a role for genes outside the Igh locus in the control of Id expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号