首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Application of L--aminooxy--phenylpropionic acid (L-AOPP), a potent and specific competitive inhibitor of L-phenylalanine ammonia-lyase (PAL), to an anthocyanin-producing cell suspension culture ofDaucus carota results in a dramatic increase in extractable PAL activity and an accumulation of phenylalanine (Noé et al., 1980, Planta149, 283–287). Using an immunoprecipitation technique, evidence was obtained that the increase in PAL activity the result of de-novo synthesis. The activity of the other enzymes of the general phenylpropanoid metabolism, e.g., trans-cinnamate 4-hydroxylase and hydroxycinnamate: CoA ligase, were not affected by L-AOPP. This result strongly supports the view that PAL is regulated independently.Abbreviations CAH trans-cinnamate 4-hydroxylase - L-AOPP L--aminooxy--phenylpropionic acid - PAL L-phenylalanine ammonia-lyase  相似文献   

2.
Reinhard Tutschek 《Planta》1982,155(4):301-306
L-phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) from Sphagnum magellanicum BRID. is inhibited by t-cinnamic acid in vitro only at relatively high doses. In contrast, p-coumaric acid does not display an inhibitory effect in a comparable concentration range. Sphagnum acid, an endogenous cinnamic acid derivative of sphagna, strongly enhances PAL activity at certain concentrations. The involvement of the phenylpropanoid pathway in the biosynthesis of the main reddish-violet wall pigment of Sphagnum magellanicum (sphagnorubin) is studied at several metabolic levels. Extractable PAL activity rises in response to the stimulus of sphagnorubin synthesis (nightly application of low temperature). If the formation of sphagnorubin is blocked in vivo by the PAL-inhibitor L--aminooxy--phenylpropionic acid (AOPP), complementation of the mosses by p-coumaric acid is able to overcome partially the inhibition. The mechanism of PAL induction by nightly cold treatment is independent of soluble carbohydrates which concomitantly accumulate as a result of photosynthetic action. Suppression of the sugar formation by application of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) is contrasted with an enhancement of PAL activity above the level of the merely cold-treated plants. The fluctuations of the enzyme level are principally unaffected by a DCMU-treatment.Abbreviations L-AOPP L--aminooxy--phenylpropionic acid - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5.) - TAL L-tyrosine ammonia-lyase Dedicated to Professor H. Rudolph  相似文献   

3.
B. E. Ellis  S. Remmen  G. Goeree 《Planta》1979,147(2):163-167
Phenylalanine ammonia-lyase from an over-producer strain of Coleus blumei Benth. cell cultures accumulating high levels of rosmarinic acid (RA) has been shown to possess no special feed-back sensitivity to RA or its precursors. No tyrosine-3-hydroxylase activity could be detected in culture extracts and no specific inhibitors of tyrosine incorporation into RA were found. L--aminooxy--phenyl propionic acid, however, was effective in specifically blocking phenylalanine incorporation. This block also led to an accumulation of label from tyrosine in 4-hydroxyphenyllactic acid rather than in 3,4-dihydroxyphenylalanine (DOPA) or 3,4-dihydroxyphenyllactic acid. These observations require a re-evaluation of the possible role of DOPA as a major biogenic precursor to RA.Abbreviations AOPP -aminooxy--phenylpropionic acid - DOPA 3,4-dihydroxyphenylalanine - RA rosmarinic acid (-O-caffeoyl-3,4-dihydroxyphenyllactic acid) - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5)  相似文献   

4.
(R)-(1-Amino-2-phenylethyl)phosphonic acid (R-APEP), an inhibitor of phenylalanine ammonia-lyase (PAL), was applied to the tap root of 42-h-old soybean (Glycine max. (L.) Merrill cv. Harosoy 63) seedlings during inoculation with zoospores of the incompatible race 1 of Phytophthora megasperma f.sp. glycinea (Pmg1) for 2 h and during a subsequent incubation period. In contrast to L-2-aminooxy-3-phenylpropionic acid, R-APEP was not toxic to the zoospores which remained virulent in presence of the inhibitor. A 50% inhibition of PAL activity in vitro was observed with 4.2 M R-APEP and with 36 M of the S-enantiomer. When R-APEP at 330 M was applied for a total of 36 h to the seedlings, resistance against Pmg 1 was abolished. Such seedlings were indistinguishable in appearance from those seedlings which had been inoculated with the compatible race 3 of Pmg. Roots treated with R-APEP at 330 M showed a reduction of about 47% in glyceollin content when measured 12 h after inoculation, and with 1 mM a 67% reduction. In contrast, treatment with S-APEP (1 mM) caused only a 20% reduction in glyceollin content. As determined by indirect immunofluorescence of fungal hyphae in cryotome cross-sections of roots, the growth pattern of the incompatible race 1 of Pmg changed to that of the compatible race 3 under conditions where R-APEP caused loss of resistance against Pmg 1. The results support the concept of an important role of glyceollin in resistance of soybean against incompatible races of the fungus.Abbreviations R-APEP, S-APEP R.S enantiomers of (1-amino-2-phenylethyl)phosphonic acid - L-AOPP L-2-aminooxy-3-phenylpropionic acid - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - Pmg 1 Phytophthora megasperma f.sp. glycinea race 1 - Pmg 3 Phytophthora megasperma f.sp. glycinea race 3  相似文献   

5.
The extractable activity ofl-phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) in cell suspension cultures of bean (Phaseolus vulgaris) is greatly induced following exposure to an elicitor preparation from the cell walls of the phytopathogenic fungusColletotrichum lindemuthianum. Following exogenous application oftrans-cinnamic acid (the product of the PAL reaction) to elicitor-induced cells, the activity of the enzyme rapidly declines. Loss of enzyme activity is accompanied by inhibition of the rate of synthesis of PAL subunits, as determined by [35S]methionine pulse-labelling followed by specific immunoprecipitation; this is insufficient to account for the rapid loss of PAL enzyme activity. Pulse-chase and immune blotting experiments indicate that cinnamic acid does not affect the rate of degradation of enzyme subunits, but rather mediates inactivation of the enzyme. A non-dialysable factor from cinnamicacid-treated bean cells stimulates removal of PAL activity from enzyme extracts in vitro; this effect is dependent on the presence of cinnamic acid. Such loss of enzyme activity in vitro is accompanied by an apparent loss or reduction of the dehydroalanine residue of the enzyme's active site, as detected by active-site-specific tritiation, although levels of immunoprecipitable enzyme subunits do not decrease. Furthermore, cinnamic-acid-mediated loss of enzyme activity in vivo is accompanied, in pulse-chase experiments, by a greater relative loss of35S-labelled enzyme subunits precipitated by an immobilised active-site affinity ligand than of subunits precipitated with anti-immunoglobulin G. It is therefore suggested that a possible mechanism for cinnamic-acid-mediated removal of PAL activity may involve modification of the dehydroalanine residue of the enzyme's active site.Abbreviations AOPP l--aminoxy--phenylpropionic acid - CA trans-cinnamic acid - PAGE polyacrylamide gel electrophoresis - PAL l-phenylalanine ammonia-lyase - SDS sodium dodecyl sulphate  相似文献   

6.
The metabolism of D- and L-p-fluorophenylalanine (PFP) in DL-PFP resistant and sensitive tobacco cell cultures (Nicotiana tabacum), cell lines TX4 and TX1, respectively, has been compared. The amino acid analogue was taken up at a lower rate by the resistant cell line TX4. Incorporation of PFP into protein was also considerably reduced in TX4 cells, compared to TX1 cells. This, however, resulted mainly from a diminished availability of PFP due to a more rapid conversion of PFP by TX4 cells. TX1 cells and TX4 cells converted PFP qualitatively in the same way. The only detectable metabolite of D-PFP was N-malonyl-D-PFP, while all metabolites of L-PFP were identified as sequent products of the initial deamination of L-PFP by the enzyme phenylalanine ammonia-lyase (PAL). As TX4 cells were endowed with higher PAL-activity than TX1 cells, the resistant cells were able to metabolize L-PFP more rapidly to give, e.g., p-fluorocinnamoyl glucose ester and p-fluorocinnamoyl putrescine. In the presence of the specific PAL-inhibitor -aminooxy--phenylpropionic acid TX4 cells were slightly more sensitive to PFP. This suggests that the better detoxification contributes to the acquired resistance. The use of PFP as specific indicator for cell lines with increased PAL-activity, and hence increased levels of phenolic compounds, is discussed.Abbreviations AOPP -aminooxy--phenylpropionic acid - MCW methanol:chloroform:water - PAL phenylalanine ammonia-lyase - PFP p-fluorophenylalanine - Phe phenylalanine  相似文献   

7.
Reinhard Tutschek 《Planta》1982,155(4):307-309
The ability of the phenylalanine ammonia-lyase (PAL)-inhibitor L--aminooxy--phenyl-propionic acid (AOPP) to suppress the synthesis of the main reddish-violet wall pigment of Sphagnum magellanicum (sphagnorubin) was investigated. Fifty percent inhibition is achieved with 14 M AOPP in mosses stimulated to intensive coloring by sugar feeding. AOPP does not affect the content of free amino acids, except for phenylalanine, during cold-induced sphagnorubin synthesis. AOPP dramatically amplifies the increase in extractable PAL activity in response to cold treatment. Phenylalanine applied in vivo causes an eminent increase in PAL activity, above the level of the cold-treated mosses. The results from the feeding experiments are discussed in connection with a possible end-product repression in PAL activity with sphagnorubin-synthesizing mosses. These results are correspond best to the theory that the enzyme level is regulated independently from a mechanism of feedback repression.Abbreviations L-AOPP L--aminooxy--phenylpropionic acid - DCMU 3-(3,4-dichlorophenyl)-1.1-dimethyl urea - PAL L-phenylalanine ammonia-lyase (EC. 4.3.1.5.) - TAL L-tyrosine ammonia-lyase  相似文献   

8.
R. A. Dixon  T. Browne  M. Ward 《Planta》1980,150(4):279-285
The increase in extractable phenylalanine ammonia-lyase (PAL;EC 4.3.1.5.) activity induced in French bean cell suspension cultures in response to treatment with autoclaved ribonuclease A was inhibited by addition of the phenylpropanoid pathway intermediates cinnamic acid, 4-coumaric acid or ferulic acid. The effectiveness of inhibition was in the order cinnamic acid>4-coumaric acid>ferulic acid. Cinnamic acid also inhibited the PAL activity increase induced by dilution of the suspensions into an excess of fresh culture medium. Addition of low concentrations (<10-5M) of the pathway intermediates to cultures at the time of application of ribonuclease gave variable responses ranging from inhibition to 30–40% stimulation of the PAL activity measured at 8 h. Following addition of pathway intermediates to cultures 4–5 h after ribonuclease treatment, rapid increases followed by equally rapid declines in PAL activity were observed. The cinnamic acid-stimulated increase in enzyme activity was unaffected by treatment with cycloheximide at a concentration which gave complete inhibition of the ribonuclease-induced response. However, cycloheximide completely abolished the subsequent decline in enzyme activity. Treatment of induced cultures with -aminooxy--phenylpropionic acid (AOPPA) resulted in increased but delayed rates of enzyme appearance when compared to controls not treated with the phenylalanine analogue. The results are discussed in relation to current views on the regulation of enzyme levels in higher plants.Abbreviations AOPPA -aminooxy--phenylpropionic acid - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5) - AOA -aminooxyacetic acid  相似文献   

9.
Summary During the early development of mungbean seedlings, treatment with L--aminooxy--phenylpropionic acid (AOPP), a potent specific inhibitor of phenylalanine ammonia-lyase, results in an inhibition of anthocyanin and lignin synthesis. The xylem vessels of the hypocotyl and root of AOPP treated seedlings collapse, and the cellulose microfibrils of the unlignified secondary wall are separated from one another and lie disorganized in the lumen of the mature xylem cell. The differentiation of the secondary cell wall appears unaffected by AOPP treatment, as does the ultrastructure of the wall of the mature phloem fibers of the root which is also lignified in untreated tissue. The results are discussed in the light of current thinking on the role and development of lignification in the xylem vessel.Abbreviation AOPP L-aminooxy--phenylpropionic acid  相似文献   

10.
A previously described procedure for the estimation of relative activities of phenylalanine ammonia-lyase (EC 4.3.1.5) in intact plant cells (Amrhein et al. (1976) Planta 131, 33–40) was reexamined for its specificity and its applicability to various tissues. In buckwheat hypocotyl segments 3H is stereospecifically released from the pro-3S-position of L-[2,3-3H]phenylalanine and is thus due to phenylalanine ammonia-lyase activity. In buck wheat and sunflower leaf disks, however, 3H release occurs from both the 2- and 3-positions of the labeled substrate and can only partially be attributed to phenylalanine ammonia-lyase activity.Abbreviations AOA -aminooxyacetic acid - L-AOD L-aminoacid oxidase (EC 1.4.3.2) - D-AOD D-amino-acid oxidase (EC 1.4.3.3) - L-AOPP L--aminooxy--phenylpropionic acid - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - TAL tyrosine ammonia-lyase  相似文献   

11.
N. Amrhein  H. Holländer 《Planta》1979,144(4):385-389
Both enantiomers of -aminooxy--phenylpropionic acid (AOPP), potent inhibitors of L-phenylalanine ammonia-lyase, and their N-benzyloxycarbonyl (N-BOC) derivatives inhibit anthocyanin formation in developing flowers of Ipomoea tricolor Cav. and Catharanthus roseus Don. as well as in seedlings of Brassica oleracea var. caulo-rapa DC (kohlrabi) and B. oleracea var. capitata L. (red cabbage) with little interference with their normal development. Kohlrabi seedlings tolerate up to 0.3 mM L-AOPP and N-BOC-L-AOPP without a reduction of fresh weight or chlorophyll content, while anthocyanin is reduced to less than 20%.Abbreviations AOPP -aminooxy--phenylpropionic acid - N-BOC N-benzyloxycarbonyl - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5)  相似文献   

12.
Particulate membrane preparations isolated from cambial cells and differentiating and differentiated xylem cells of pine (Pinus sylvestris L.) trees synthesised [14C]glucans using either guanosine 5-diphosphate (GDP)-D-[U-14C]glucose or uridine 5-diphosphate (UDP)-D-[U-14C]glucose as glycosyl donors. Although these glucans had -(13) and -(14) linkages in an approximate ratio 1:1, the distribution of the linkages in the glucan synthesised from GDP-D-glucose was different from that synthesised from UDP-D-glucose. The synthesis of the mixed -(13) and -(14) glucan from GDP-D-[U-14C]glucose was changed to that of -(14) glucomannan in the presence of increasing concentrations of GDP-D-mannose. The glucan formed from UDP-D-[U-14C]glucose was not affected by any concentration of GDP-D-mannose. The membrane preparations epimerized GDP-D-glucose to GDP-D-mannose; however, the low amount of GDP-D-mannose formed was not incorporated into the polymer becaus the affinity of the synthase for GDP-D-glucose was much greater than that for GDP-D-mannose. The glucan formed from GDP-D-glucose and the glucomannan formed from GDP-D-glucose together with GDP-D-mannose were characterized. The apparent K m and V max of the glucan synthase for GDP-D-glucose were 6.38 M and 5.08 M·min-1, respectively. No lipid intermediates were detected during the synthesis of either glucan or glucomannan. The results indicated that an enzyme complex for the formation of the glucomannan was bound to the membrane.Abbreviations GDP guanosine 5-diphosphate - GLC gasliquid chromatography - UDP trridine 5-diphosphate  相似文献   

13.
Cells of Daucus carota grown in a liquid medium produced large amounts of cyanidin as the only flavonoid aglycon. After inoculation in fresh medium a maximum activity of phenylalanine ammonia lyase (PAL; EC 4.3.1.5) was observed within 24 h. L--aminooxy--phenylpropionic acid (L-AOPP), thought to be a competitive inhibitor of PAL, inhibited cyanidin accumulation up to 80%. In order to study the regulatory role of PAL, the effects of L-AOPP and t-cinnamic acid, the product of the deamination of phenylalanine, were investigated. Cinnamic acid, applied in vivo (10-4 M), was not able to compensate for the inhibition of cyanidin production caused by L-AOPP (10-4 M) in the same sample. Carrot cells treated with L-AOPP exhibited a super-induction of PAL already described for gherkin hypocotyls (Amrhein and Gerhardt 1979). This effect was not influenced by t-cinnamic acid. L-AOPP seems to be a very specific inhibitor since it affected neither growth nor soluble protein content, whereas t-cinnamic acid inhibited both. Investigations on the content of soluble amino acids in L-AOPP-treated cells revealed a specific accumulation of soluble phenylalanine, whereas treatment with t-cinnamic acid led to an increase of amino acids in general, thus indicating that the latter compound has a rather unspecific effect on cellular metabolism. In vitro studies with PAL isolated from Daucus carota revealed that L-AOPP inhibited the enzyme at very low doses (K I=2.4·10-9), whereas t-cinnamic acid, by comparison, affected the enzyme at high concentrations (K I=1.8·10-4).Abbreviations PAL phenylalanine ammonia lyase - L-AOPP L--aminooxy--phenylpropionic acid  相似文献   

14.
B. G. Smith  P. H. Rubery 《Planta》1981,151(6):535-540
During the first 24 h of in vitro incubation of excised potato tuber (Solanum tuberosum L.) discs, the appearance of phenylalanine ammonia-lyase (PAL; EC 3.4.1.5) and the accumulation of chlorogenic acid are both stimulated by infection with Phytophthora infestans (Mont.) de Bary. Whereas in control tissue the level of PAL reached a stable plateau value after 40 h, in infected tissue it subsequently rose again, in one experiment, as the fungal mycelium developed. In the infected but not the control tissue, the level of chlorogenic acid subsequently fell to about to about 20% of its maximum after 50 h. The time courses of increases in cinnamic acid 4-hydroxylase (CA4H; EC 1.14.13.11; 0–60 h) and of caffeic acid acid o-methyltransferase (COMT; EC 2.1.1.42; 0–160 h) are not altered by fungal infection. If the discs are restored to the tuber environment immediately after excision, by placing them inside a host tuber, the activity of PAL as well as those of CA4H and COMT remained at the constant low endogenous level for at least 60 h, irrespective of whether the discs had first been inoculated with P. infestans. The increase in PAL may not be an obligatory feature of the P. infestans/potato compatible interaction but dependent on an underlying wound response. The experiments provide further evidence that PAL is the rate limiting step of chlorogenic acid biosynthesis in potato tuber discs.Abbreviations PAL phenylalanine ammonia-lyase - CA4H cinnamic acid 4-hydroxylase - COMT caffeic acid o-methyltransferase - CGA chlrogenic acid (5-o-caffeoylquinic acid) - gfwt gram fresh weight  相似文献   

15.
W. Jahnen  K. Hahlbrock 《Planta》1988,173(2):197-204
The response of parsley seedlings (Petroselinum crispum) inoculated with zoospores of the soybean-pathogenic fungus, Phytophthora megasperma f. sp. glycinea, ranged from immunity to physiological susceptibility depending on the post-inoculation environmental conditions. Typical nonhost resistance reactions, hypersensitive cell death and the formation of small local lesions, occurred under high relative humidity and 16 h illumination per day. Localized biochemical reactions were monitored using fluorescence microscopy combined with histochemical and immunohistochemical methods. The rapid accumulation of furanocoumarin phytoalexins, wall-bound phenolics and callose was detected around infection sites. Indirect antibody staining of frozen tissue sections demonstrated the local accumulation of phenylalanine ammonia-lyase, a key enzyme of general phenylpropanoid metabolism, and S-adenosyl-L-methionine: bergaptol O-methyltransferase, a specific enzyme of the furanocoumarin pathway. The results indicate that phenylpropanoid derivatives are synthesized de novo at infection sites.Abbreviations BMT S-adenosyl-L-methionine:bergaptol O-methyltransferase - PAL phenylalanine ammonia-lyase - PBS phosphate-buffered saline  相似文献   

16.
W. Knogge  G. Weissenböck 《Planta》1986,167(2):196-205
Primary leaves of oats (Avena sativa L.) have been used to study the integration of secondary phenolic metabolism into organ differentiation and development. In particular, the tissue-specific distribution of products and enzymes involved in their biosynthesis has been investigated. C-Glucosylflavones along with minor amounts of hydroxycinnamic-acid esters constitute the soluble phenolic compounds in these leaves. In addition, considerable amounts of insoluble products such as lignin and wall-bound ferulic-acid esters are formed. The tissue-specific activities of seven enzymes were determined in different stages of leaf growth. The rate-limiting enzyme of flavonoid biosynthesis in this system, chalcone synthase, together with chalcone isomerase (EC 5.5.1.6) and the terminal enzymes of the vitexin and isovitexin branches of the pathway (a flavonoid O-methyltransferase and an isovitexin arabinosyltransferase) are located in the leaf mesophyll. Since the flavonoids accumulate predominantly (up to 70%) in both epidermal layers, an intercellular transport of products is postulated. In contrast to the flavonoid enzymes, L-phenylalanine ammonia-lyase (EC 4.3.1.5), 4-coumarate: CoA ligase (EC 6.2.1.12), and S-adenosyl-L-methionine: caffeate 3-O-methyltransferase (EC 2.1.1.-), all involved in general phenylpropanoid metabolism, showed highest activities in the basal leaf region as well as in the epidermis and the vascular bundles. We suggest that these latter enzymes participate mainly in the biosynthesis of non-flavonoid phenolic products, such as lignin in the xylem tissue and wall-bound hydroxycinnamic acid-esters in epidermal, phloem, and sclerenchyma tissues.Abbreviations CHI chalcone isomerase - CHS chalcone synthase - 4CL 4-coumarate: CoA ligase - CMT S-adenosyl-L-methionine:caffeate 3-O-methyltransferase - FMT S-adenosyl-L-methionine:vitexin 2-O-rhamnoside 7-O-methyltransferase - HPLC high-performance liquid chromatography - IAT uridine 5-diphosphate L-arabinose:isovitexin 2-O-arabinosyltransferase - PAL L-phenylalanine ammonia-lyase  相似文献   

17.
This communication reviews data on the accumulation and biosynthesis of rosmarinic acid in cell suspension cultures ofColeus blumei. The influence of the medium, mainly the carbohydrate source on growth and rosmarinic acid production in these cell cultures is described. The biosynthetic pathway of rosmarinic acid was elucidated inColeus blumei cell cultures: eight enzymatic activities are involved in the transformation of the precursors phenylalanine and tyrosine to the end product rosmarinic acid.Abbreviations CAH cinnamic acid 4-hydroxylase - 4CL 4-coumarate:CoA ligase - HPPR hydroxyphenylpyruvate reductase - 3-H hydroxycinnamoyl-hydroxyphenyllactate 3-hydroxylase - 3-H hydroxycinnamoyl-hydroxyphenyllactate 3-hydroxylase - PAL phenylalanine ammonia-lyase - RAS rosmarinic acid synthase (hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyl transferase) - TAT tyrosine aminotransferase  相似文献   

18.
The polypeptide encoded by the partial fragment of cDNA of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), PALcDNAl (Osakabe et al., 1995, Plant Sci. 105: 217–226), isolated from Populus kitakamiensis (P. sieboldii x P. grandidentata), was expressed in Escherichia coli cells. The polypeptide was purified and an antiserum raised against it. The antiserum recognized a protein of 77 kDa on nitrocellulose blots after sodium dodecyl sulfate-poly-acrylamide gel electrophoresis of total protein and the partially purified PAL protein from P. kitakamiensis. Moreover,the antiserum recognized a protein on the blot after non-denaturing polyacrylamide gel electrophoresis of P. kitakamiensis proteins and this protein had PAL activity. Furthermore, the antibody inhibited PAL activity of extracts from stem tissues. These results showed that the antiserum against the partial PAL peptide recognized only the PAL subunits in extracts of P. kitakamiensis. Immunolocalization studies of P. kitakamiensis tissues revealed that the PAL protein was specifically localized in the xylem and the phloem fibers and no immunogold signal was found in the epidermis, the cortex, the pith, or the cambium of either stems or leaves.Abbreviations IgG immunoglobulin G - IPTG isopropylthio--d-galactoside - PAL phenylalanine ammonia-lyase The authors thank Dr. Kunio Hata of Nippon Paper Industries Co., Ltd. (Japan) for supplying P. kitakamiensis. This work was supported in part by a grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (No. 07406008).  相似文献   

19.
Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5.) induction in cotyledons from 96-h dark-grown Lycopersicon esculentum Mill. was studied in response to continuous light and hourly light pulses (blue, red, far red). The increases of PAL promoted by blue and red pulses are reversed completely by immediately following 758 nm irradiations. The response to continuous red light could be substituted for by hourly 6-min red light pulses. The effect of continuous red treatments is mainly due to a multiple induction effect of phytochrome. In contrast to red light, hourly light pulses with far red and blue, light can only partially substitute for continuous irradiation. The continuous blue response could be due to a combination of a multiple induction response and of a high irradiance response of phytochrome. The continuous far red response, could represent a high irradiance response of phytochrome. Dichromatic irradiations indicate that phytochrome is the photoreceptor controlling the light response (PAL) in tomato seedlings.Abbreviations Norflurazon NF-4-chloro-5-(methylamino)-2-(,,,-trifluoro-m-tolyl)-3 (2H) pyridazinone - PAL phenylalanine ammonia-lyase - phytochrome photoequilibrium Pfr/Ptot - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome: Pr+Pfr  相似文献   

20.
Imposition of water stress on germinated fenugreek (Trigonella foenum-graecum L.) seeds and isolated fenugreek endosperms after the beginning of galactomannan mobilisation caused a reduction in the rate of breakdown of the polysaccharide relative to unstressed controls. The activities, measured in vitro, of the three hydrolytic enzymes involved in the breakdown process (-d-galactosidase, EC 3.2.1.22;endo--d-mannanase, EC 3.2.1.78;exo--d-mannanase, EC 3.2.1.25) were not decreased. Although there was some accumulation of galactomannan-hydrolysis products in endosperms under stress, there was no clear correlation between sugar levels and the inhibition of galactomannan breakdown. When water stress was applied to fenugreek seeds after germination but before the beginning of galactomannan hydrolysis, both galactomannan breakdown and the development of the hydrolytic enzyme activities were inhibited. Washing of newly germinated seeds for 2 h in water prior to the imposition of stress gave partial relief of the inhibition of galactomannan mobilisation, partial recovery ofendo--d-mannanase levels, and full recovery of -d-galactosidase levels. It is argued: 1) that water stress after germination but before the beginning of galactomannan hydrolysis inhibits the production of hydrolytic enzymes in the endosperm, probably via decreased removal at lowered water content of diffusible inhibitory substances; and 2) that water stress after the beginning of galactomannan hydrolysis decreases the rate of galactomannan breakdown in vivo principally via decreased diffusion at lowered water content of enzymes from the aleurone layer through the storage tissue of the endosperm.Abbreviation PEG polyethyleneglycol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号