首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of D1 dopamine (DA) receptor gene is regulated during development, aging, and pathophysiology. The extracellular factors and signaling mechanisms that modulate the expression of D1 DA receptor have not been well characterized. Here, we present novel evidence that endogenous D1 DA receptor expression is inhibited by extracellular cAMP in the Cath.A Derived (CAD) catecholaminergic neuronal cell line. CAD cells express the multi-drug resistance protein 5 transporters and secrete cAMP. Addition of exogenous cAMP decreases D1 receptor mRNA and protein greater than fourfold in 24 h. The cAMP-induced decrease of D1 receptor mRNA levels is blocked by cGMP and by 1,3-dipropyl-8-(p-sulfo-phenyl)xanthine, an inhibitor of ecto-phosphodiestrase. Extracellular AMP, a metabolite of cAMP, also independently decreased D1 receptor mRNA levels. Inhibitors of ecto-nucleotidases, alpha,beta-methyleneadenosine 5'-di-phosphate and GMP, completely blocked the decrease of D1 receptor mRNA by extracellular cAMP, but only partially blocked the decrease induced by extracellular AMP. Levamisole, an inhibitor of tissue non-specific alkaline phosphatase, completely blocked the AMP-induced decrease of D1 receptor mRNA. The extracellular cAMP, AMP, and adenosine (ADO)-induced decrease in D1 receptor mRNA expression are mediated by A2a ADO receptor subtype. The results suggest a novel molecular mechanism linking activation of A2a ADO receptors with inhibition of D1 DA receptor expression.  相似文献   

2.
3.
C-11- or F-18-DOPA positron emission tomography (DOPA PET) is a new sensitive imaging technique for small neuroendocrine gastrointestinal tumors which evaluates the decarboxylase activity. To further characterize the dopaminergic system in neuroendocrine gastrointestinal tumor cells, we investigated the expression of both dopamine receptors and the transmembrane dopamine transporter (DAT) in the human neuroendocrine pancreatic cell line BON and in the neuroendocrine gut cell line STC-1. Both BON and STC-1 cells expressed mRNA of the dopamine receptors D2-D5 and DAT. mRNA of the dopamine receptor D1 was detected in BON cells only. Both in BON and STC-1 cells, expression of D2 and D5 receptors and DAT was also demonstrated immunocytochemically. For functional receptor characterization intracellular cAMP levels ([cAMP]i) were determined. Whereas in STC-1 cells dopamine and the D1-like (D1/D5) receptor agonist SKF 38393 increased [cAMP]i, [cAMP]i was decreased by dopamine or the D2-like (D2-D4) receptor agonist quinpirole in BON cells. Functional DAT activity was, however, not detected in either cell line. The presence of both dopamine receptors and of the DAT suggests an autocrine and/or paracrine function of dopamine in neuroendocrine gastrointestinal tumor cells. Yet neither the transmembrane dopamine transporter nor dopamine receptors are likely to contribute to positive DOPA PET imaging of neuroendocrine gastrointestinal tumors. However, these molecules may be of diagnostic importance when applying other dopaminergic system tracers.  相似文献   

4.
5.
Dopamine cells are generated in the ventral midbrain during embryonic development. The progressive degeneration of these cells in patients with Parkinson's disease, and the potential therapeutic benefit by transplantation of in vitro generated dopamine cells, has triggered intense interest in understanding the process whereby these cells develop. Nurr1 is an orphan nuclear receptor essential for the development of midbrain dopaminergic neurons. However, the mechanism by which Nurr1 promotes dopamine cell differentiation has remained unknown. In this study we have used a dopamine-synthesizing cell line (MN9D) with immature characteristics to analyze the function of Nurr1 in dopamine cell development. The results demonstrate that Nurr1 can induce cell cycle arrest and a highly differentiated cell morphology in these cells. These two functions were both mediated through a DNA binding-dependent mechanism that did not require Nurr1 interaction with the heterodimerization partner retinoid X receptor. However, retinoids can promote the differentiation of MN9D cells independently of Nurr1. Importantly, the closely related orphan receptors NGFI-B and Nor1 were also able to induce cell cycle arrest and differentiation. Thus, the growth inhibitory activities of the NGFI-B/Nurr1/Nor1 orphan receptors, along with their widespread expression patterns both during development and in the adult, suggest a more general role in control of cell proliferation in the developing embryo and in adult tissues.  相似文献   

6.
The accumulation of translatable acetylcholine receptor alpha-subunit mRNA was examined in the BC3H1 muscle cell line in response to serum and cell growth. Relative amounts of alpha-subunit mRNA were quantitated during differentiation by cell-free translation and immunoprecipitation with an alpha-subunit-specific monoclonal antibody. Logarithmically growing cells do not possess cell surface acetylcholine receptors; however, a significant amount of alpha-subunit mRNA is detectable in cells under these conditions. Furthermore, alpha-subunit is synthesized in growing undifferentiated cells at a rate similar to that of differentiated cultures. Following growth arrest of BC3H1 cells, surface receptors are induced to levels greater than 100-fold above that of growing cells. The relative level of translatable alpha-subunit mRNA in differentiated cells, however, is only approximately 4-fold greater than in growing cultures. Induction of alpha-subunit mRNA appears to be reversible since reinitiation of growth in quiescent differentiated BC3H1 cells results in a reduction in relative abundance of this mRNA species to levels comparable to that of undifferentiated cells and the concomitant loss of surface receptors. These results indicate that receptor expression during differentiation is regulated both post-translationally and at the level of receptor subunit mRNA accumulation.  相似文献   

7.
D(3) dopamine receptors are expressed by dopamine neurons and are implicated in the modulation of presynaptic dopamine neurotransmission. The mechanisms underlying this modulation remain ill defined. The dopamine transporter, which terminates dopamine transmission via reuptake of released neurotransmitter, is regulated by receptor- and second messenger-linked signaling pathways. Whether D3 receptors regulate dopamine transporter function is unknown. We addressed this issue using a fluorescent imaging technique that permits real time quantification of dopamine transporter function in living single cells. Accumulation of the fluorescent dopamine transporter substrate trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium (ASP(+)) in human embryonic kidney cells expressing human dopamine transporter was saturable and temperature-dependent. In cells co-expressing dopamine transporter and D3 receptors, the D2/D3 agonist quinpirole produced a rapid, concentration-dependent, and pertussis toxin-sensitive increase of ASP(+) uptake. Similar agonist effects were observed in Neuro2A cells and replicated in human embryonic kidney cells using a radioligand uptake assay in which binding to and activation of D3 receptors by [(3)H]dopamine was prevented. D3 receptor stimulation activated phosphoinositide 3-kinase and MAPK. Inhibition of either kinase prevented the quinpirole-induced increase in uptake. D3 receptor activation differentially affected dopamine transporter function and subcellular distribution depending on the duration of agonist exposure. Biotinylation experiments revealed that the rapid increase of uptake was associated with increased cell surface and decreased intracellular expression and increased dopamine transporter exocytosis. In contrast, prolonged agonist exposure reduced uptake and transporter cell surface expression. These results demonstrate that D3 receptors regulate dopamine transporter function and identify a novel mechanism by which D3 receptors regulate extracellular dopamine concentrations.  相似文献   

8.
9.
10.
11.
Estrogen induces lordosis through, in part, estrogen receptor (ER)-mediated synthesis of progesterone receptors (PR) in the ventromedial nucleus (VMN). In vitro, PR is activated by the neurotransmitter dopamine through D1-like receptors (1). In vivo, lordosis is induced by dopamine, an effect mediated in part by PR and D(5) dopamine receptors. The purpose of the present study was to determine mRNA distribution of D1-like receptors in the female rat brain using RT-PCR combined with punchout microdissection techniques. Employing specific primers to D(5) and D(1) dopamine receptors, we found detectable expression levels of D(5) dopamine receptor mRNA in VMN as well as the arcuate nucleus/median eminence (ArcN/ME). In contrast, D(1) dopamine receptor mRNA was detected only in VMN. By using this highly sensitive and specific RT-PCR methodology, we have confirmed the presence of D(5) dopamine receptor mRNA in an area of the brain that regulates reproductive behavior through PR. The data support the previous observation that D(5) dopamine receptors in VMN contribute to facilitation of female reproductive behavior by D1-like agonists.  相似文献   

12.
Molecular analysis of CCR-3 events in eosinophilic cells   总被引:10,自引:0,他引:10  
CCR-3 is a major receptor involved in regulating eosinophil trafficking. Initial analysis of chemokine receptors has demonstrated unique receptor events in different cell types, indicating the importance of investigating CCR-3 events in eosinophilic cell lines. We now report that the eosinophilic cell line, acute myelogenous leukemia (AML) 14.3D10, expresses eosinophil granule proteins and eotaxin, but has no detectable expression of eosinophil chemokine receptors. Treatment of the cell line with butyric acid and IL-5 results in a dose-dependent synergistic induction of CCR-3 and, to a lesser extent, CCR-1 and CCR-5. Interestingly, using a luciferase reporter construct under the control of the hCCR-3 promoter, the uninduced and induced cells display high, but comparable, levels of promoter activity. Differentiated AML cells developed enhanced functional activation, as indicated by adhesion to respiratory epithelial cells and chemokine-induced transepithelial migration. Chemokine signaling did not inhibit adenylate cyclase activity even though calcium transients were blocked by pertussis toxin. Additionally, chemokine-induced calcium transients were inhibited by pretreatment with PMA, but not forskolin. Eotaxin treatment of differentiated AML cells resulted in marked down-modulation of CCR-3 expression for at least 18 h. Receptor internalization was not dependent upon chronic ligand exposure and was not accompanied by receptor degradation. Thus, CCR-3 is a late differentiation marker on AML cells and uses a signal transduction pathway involving rapid and prolonged receptor internalization, calcium transients inhibitable by protein kinase C but not protein kinase A, and the paradoxical lack of inhibition of adenylate cyclase activity.  相似文献   

13.
The human embryonal carcinoma (EC) cell line Tera 2 clone 13 (T2/13) can be induced to differentiate in vitro into neuroectodermal cell types with retinoic acid. Undifferentiated cells are characterized by rapid proliferation, whereas differentiated cells show a prolonged generation time, have a limited life span, and possess new cell-surface markers. In the present study we establish that both differentiated and undifferentiated T2/13 cells express the type-B platelet-derived growth factor (PDGF) receptor mRNA and bind PDGF-BB with high affinity. Differentiation causes a three-fold increase in receptor number per cell and leaves the affinity of the receptors unaffected. These data are the first to describe expression of this receptor in EC cells. The biosynthesis and degradation of this receptor were studied in undifferentiated as well as in differentiated T2/13 cells using an anti-type-B receptor antibody. These experiments revealed that high concentrations of recombinant PDGF-AA did not accelerate receptor metabolism in both cell types. In contrast, human PDGF or recombinant PDGF-BB added to the culture dishes readily increased receptor degradation. These results demonstrate that T2/13 cells express functional type-B PDGF receptors and suggest that cells responsive to PDGF might be present during mammalian development before the onset of mesoderm formation.  相似文献   

14.
15.
Abstract: Bradykinin receptors have been subdivided into at least two major pharmacological subtypes, B1 and B2. The cDNAs encoding functional B2 receptors have recently been cloned, but no molecular information exists at present on the B1 receptor. In this article, we describe experiments examining the possible relationship between the mRNAs encoding the B1 and B2 types of receptor. We showed previously that the Human fibroblast cell line W138 expresses both B1 and B2 receptors. In this report, we describe oocyte expression experiments showing that the B1 receptor in W138 human fibroblast cells is encoded by a distinct mRNA ∼2 kb shorter than that encoding the B2 receptor. We have used an antisense approach in conjunction with the oocyte expression system to demonstrate that the two messages differ in sequence at several locations throughout the length of the B2 sequence. Taken together with the mixed pharmacology exhibited in some expression systems by the cloned mouse receptor, the data indicate that B1-type pharmacology may arise from two independent molecular mechanisms.  相似文献   

16.
The Madin-Darby canine kidney (MDCK) cell line, derived from distal tubule/collecting duct, expresses differentiated properties of renal tubule epithelium in culture. We studied the expression of adrenergic receptors in MDCK to examine the role of catecholamines in the regulation of renal function. Radioligand-binding studies demonstrated, on the basis of receptor affinities of subtype-selective adrenergic agonists and antagonists, that MDCK cells have both alpha 1- and beta 2- adrenergic receptors. To determine whether these receptor types were expressed by the same cell, we developed a number of clonal MDCK cell lines. The clonal lines had stable but unique morphologies reflecting heterogeneity in the parent cell line. Some clones expressed only beta 2-adrenergic receptors and were nonmotile, whereas others expressed both alpha 1- and beta 2-receptors and demonstrated motility on the culture substrate at low cell densities. In one clone, alpha- and beta- receptor expression was stable for more than 50 passages. Catecholamine agonists increased phosphatidylinositol turnover by activating alpha- adrenergic receptors and cellular cyclic adenosine monophosphate accumulation by activating beta-adrenergic receptors. Guanine nucleotide decreased the affinity of isoproterenol for the beta 2- receptor but did not alter the affinity of epinephrine for the alpha 1- receptor. These results show that alpha 1- and beta 2-receptors can be expressed by a single renal tubular cell and that the two receptors behave as distinct entities in terms of cellular response and receptor regulation. Heterogeneity of adrenergic receptor expression in MDCK clones may reflect properties of different types of renal tubule cells.  相似文献   

17.
In this study, we have established a non-neuronal cell line stably and inducibly expressing recombinant NMDA receptors (NRs) composed of rat NR1a/NR2A subunits. EcR-293 cells were transfected with rat NR1a and NR2A cDNAs using the inducible mammalian expression vector pIND. Cell colonies resistant for the selecting agents were picked and tested for NR2A mRNA as well as protein expression using quantitative RT-PCR and flow cytometry based immunocytochemistry. Clonal cells expressing functional NMDA receptors were identified by measuring NMDA-evoked ion currents, and NMDA-induced increase in cytosolic free calcium concentration in whole-cell patch-clamp and fluorimetric calcium measurements, respectively. One clone named D5/H3, which exhibited the highest response to NMDA, was chosen to examine inducibility of the expression and for pharmacological profiling of recombinant NR1a/NR2A NMDA receptors. To check inducibility, NR2A subunit expression in D5/H3 cells treated with the inducing agent muristerone A (MuA) was compared with that in non-induced cells. Both NR2A mRNA and protein expression was several folds higher in cells treated with the inducing agent. As part of the pharmacological characterization, we examined the activation of the expressed NR1a/NR2A receptors as a function of increasing concentration of NMDA. NMDA-evoked concentration-dependent increases in cytosolic [Ca2+] with an EC50 value of 41 +/- 1 microM. In addition, whereas the NMDA response was concentration-dependently inhibited by the channel blocker MK-801 (IC50 = 58 +/- 6 nM), NR2B subunit selective NMDA receptor antagonists were ineffective. Thus, this cell line, which stably and inducibly expresses recombinant NR1a/NR2A NMDA receptors, can be a useful tool for testing NMDA receptor antagonists and studying their subunit selectivity.  相似文献   

18.
19.
20.
Dopamine is used to treat heart failure, particularly after cardiac surgery in infants, but the mechanisms of action are unclear. We investigated differences in the effect of dopamine on L-type calcium current (I(Ca)) between newborn (NB, 1-4 days) and adult (AD, 3-4 mo) rabbit ventricular myocytes. Myocytes were enzymatically dissociated from NB and AD rabbit hearts. I(Ca) was recorded by using the whole cell patch-clamp technique. mRNA levels of cardiac dopamine receptor type 1 (D1), type 2 (D2), and beta-adrenergic receptors (beta-ARs) were measured by real-time RT-PCR. Dopamine (100 microM) increased I(Ca) more in NB (E(max) 87 +/- 10%) than in AD ventricular cells (E(max) 21 +/- 3%). Further investigation of this difference showed that mRNA levels of the D1 receptor were significantly higher in NB, and, with beta-AR blockade, dopamine increased I(Ca) more in NB than AD cells. Additionally, SKF-38393 (selective D1 receptor agonist) significantly increased I(Ca) by 55 +/- 4% in NB (P < 0.05, n = 4) and by 11 +/- 1% in AD (P < 0.05, n = 6). Dopamine in the presence of SCH-23390 (D1 receptor antagonist) increased I(Ca) in NB cells by 67 +/- 5% and by 22 +/- 2% in AD cells, suggesting a role for beta-AR stimulation. Selective blockade of beta(1)- or beta(2)-receptors (with block of D1 receptors) showed that the beta-AR action of dopamine in the NB was largely mediated via beta(2)-AR activation. Dopamine produces a larger increase in I(Ca) in NB cardiomyocytes compared with ADs. The mechanism of action is not only through beta(2)-ARs but also due to higher expression of cardiac D1 receptor in NB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号