首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND AIMS: Growth in trunk height in canopy openings is important for saplings. How saplings increase height growth in canopy openings may relate to crown architectural constraints. Responses of crown development to canopy openings in relation to trunk height growth were studied for saplings (0.2-2.5 m tall) of eight tropical submontane forest tree species in Indonesia. The results of this study were also compared with those of temperate trees in northern Japan. METHODS: The crown architecture differed among the eight tropical species, i.e. they had sparsely to highly developed branching structures. Crown allometry was compared among the eight species in each canopy condition (closed canopy or canopy openings), and between closed canopy and canopy openings within a species. A general linear regression model was used to analyse how each species increases height growth rate in canopy openings. Crown allometry and its plasticity were compared between tropical and temperate trees by a nested analysis of covariance. KEY RESULTS: Tropical submontane trees had responses similar to cool-temperate trees, showing an increase in height in canopy openings, i.e. taller saplings of sparsely branched species increase height growth rates by increasing the sapling leaf area. Cool-temperate trees have a wider crown projection area and a smaller leaf area per crown projection area to avoid self-shading within a crown compared with tropical submontane trees. Plasticity of the crown projection area is greater in cool-temperate trees than in tropical submontane trees, probably because of the difference in leaf longevity. CONCLUSIONS: This study concluded that interspecific variation in the responses of crown development to canopy openings in regard to increasing height related to the species' branching structure, and that different life-forms, such as evergreen and deciduous trees, had different crown allometry and plasticity.  相似文献   

2.
辽东栎林内不同小生境下幼树植冠构型分析   总被引:1,自引:0,他引:1  
以黄土高原黄龙山林区辽东栎林内3个小生境(林下、林隙、林缘)下辽东栎天然更新幼树为研究对象,采用典型抽样法对辽东栎幼树侧枝、叶片和树冠的空间分布状况以及生物量分配状况进行调查分析,探讨微生境与幼树植冠构型特征的关系,明确辽东栎幼树对不同小生境的适应策略,为栎林经营和林分结构优化提供理论依据。结果显示:(1)3种生境下辽东栎幼树构型发生了可塑性变化,林下幼树树冠层次比较单一,林隙与林缘的幼树树冠层次更加丰富。(2)由林下至林缘,幼树的树高、枝下高呈逐渐减小的趋势,而地径变化趋势与之相反;幼树的冠幅、树冠面积、树冠率呈先增加后减小的趋势,并且林下与林隙、林缘的差异显著;幼树的总体分枝率、逐步分枝率、枝径比呈先增加后减小的趋势。(3)3种生境下,幼树的一级枝的枝长、直径与倾角随着树高的增加而呈减小的趋势,但3种生境的差异不显著;林下一级枝主要分布在冠层中上部,而林隙与林缘一级枝主要分布在冠层中下、中上部。(4)由林下至林缘幼树叶长、叶宽、单叶面积和比叶面积逐渐降低,而单株叶数、叶总面积、叶面积指数呈先增大后减小趋势;与其他2种生境相比林下叶片分布趋于冠层上部。(5)幼树地上部分生物量中林下主干生物量占83%,枝和叶生物量只占17%;而林隙与林缘虽然各部位生物量有所差异但比例基本一致,其中主干占66%左右,枝和叶生物量占34%左右。研究表明,林隙生境下幼树的构型优于林缘和林下生境,在今后栎林的经营中,可以通过适当间伐来增加林隙数量,为森林更新和结构的优化提供有利条件。  相似文献   

3.
山西濒危植物翅果油树植冠的构型分析   总被引:1,自引:0,他引:1  
应用分形理论及方法,从分枝格局和冠幅扩展2个方面对山西翼城和乡宁的35株翅果油树(Elaeagnus mollis Diels)个体的植冠构型进行统计分析。结果表明,幼树和成树的总体分枝率和逐步分枝率有显著变化;一级枝的平均枝长和枝径有显著差异,但枝和叶的方位角及叶倾角差异不明显。不同发育阶段个体的冠幅变化较大,幼树冠幅的分形维数(2.0026)小于成树(2.2694)。翅果油树在不同生长发育阶段对生境变化有不同的构型策略。  相似文献   

4.
The growth pattern was analysed forAbies mariesii Mast. saplings in the subalpine climax forests of the northern Yatsugatake Mountains, Central Japan. The lateral branches were distinguished from the trunk not only with respect to the branching habits and needle arrangement but also with respect to the distribution of dry matter to needles, the slenderness of shoot-stem and the longevity of needles on them. Based on these differences, the contribution of the trunk and lateral branches to the matter production function of saplings is discussed. The lateral branches showed plastic changes in their growth characters in order to expand and maintain an assimilation system effectively, under conditions of suppression. In addition, the trunk growth was inhibited compared with the lateral branch growth and the apical dominance among lateral branches was weakened in the suppressed saplings. It was concluded that these growth habits resulted in the observed difference in the crown shape of saplings in the different habitats. Arguments are presented regarding the adaptive meanings of such a growth pattern for the shade tolerance and survival of the saplings and for the regeneration of the forest.  相似文献   

5.
Open-grown sugar maple saplings differ qualitatively in their gross morphology when compared with saplings growing in shaded forest understories. Forest-grown saplings have their leaves distributed in a few planar layers, while open-grown saplings exhibit fuller crowns and more profuse branching. In order to quantify these observed differences in branching patterns, ordering methods were applied to twenty saplings each from forest and open sites. Bifurcation ratio, an index of branching previously assumed to be species constant, differed significantly between forest-grown and open-grown saplings. Bifurcation ratios for forest-grown saplings were low, with a mean of 3.19. Values for open-grown saplings were generally higher, with a mean of 7.05. This variation of bifurcation ratio between forest-grown and open-grown sugar maple saplings is the first such variation within any species to be reported. In addition, open-grown saplings were characterized by more extension growth of terminal shoots than forest-grown saplings. These results suggest that sugar maple has a range of branching and light interception characteristics that suit it well in different microenvironments.  相似文献   

6.
Mechanical and morphological studies of Plectocomia himalayana (subtribe Plectocomiinae) revealed characteristics that differ strongly from species of subtribe Calaminae ( Calamus and Daemonorops ). In species of Calaminae tested previously, the contribution of the leaf sheath drastically increases stiffness in juvenile axes and towards the apex of older plants. In P. himalayana the relative contribution of the leaf sheath to axis stiffness is less and leaf sheath senescence does not strongly reduce axial stiffness as observed in Calamus and Daemonorops . Natural aerial branching, only described in Korthalsia and Laccosperma among rattans, is common in P. himalayana . Aerial branching and adventitious roots occur frequently along old stems allowing autonomy of stems, following mechanical injury and promoting vegetative propagation. The climbing habit is known to have evolved at least twice within the Calamoideae. The results observed here suggest that climbing habits may differ in detail and that different 'climbing strategies' may have evolved within the subfamily Calamoideae resulting from: (1) variable stem flexibility, (2) the variable mechanical role of the leaf sheath ( Calamus–Daemonorops ) and (3) production of branches and aerial roots conferring a higher degree of architectural plasticity ( Plectocomia ).  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 83–91.  相似文献   

7.
不同光环境下紫椴幼树树冠结构的可塑性响应   总被引:20,自引:1,他引:19  
从冠形、侧枝和叶片在树冠中的空间分布角度对天然更新紫椴幼树的树冠结构进行了论述,认为紫椴幼树树冠对光照条件的变化有显著的可塑性响应.强光通过抑制主干的生长促进了侧枝的分化,庇荫则通过抑制1级侧枝的生长促进了侧枝的再分枝.随着光照水平的降低,紫椴幼树的数量叶片密度显著降低,且叶片逐渐集中于冠上层.林冠下的紫椴幼树通过这种侧枝和叶片的分布格局,在形态上提高其对光的截获能力在适度庇荫环境中,紫椴幼树垂直生长采取演替先锋种的"避荫”对策,侧枝生长采取中等耐荫种的"掠光”对策;在弱光环境中,紫椴幼树则采取典型的忍耐适应行为.这种树冠结构的变化是提高紫椴幼树对光的截获能力的一种有益适应.  相似文献   

8.
Cecropia obtusa Trécul (Cecropiaceae) is a pioneer species associated with the initial phases of regeneration of tropical South American forests. A comparison of the succession of morphological events associated with each node (inflorescences or branches developed or aborted and underlying internode length) making up the axes of 30 trees helped to establish a link between their architecture and the regularity and synchronicity of their expression of growth, flowering, and branching processes over time on an individual and stand level. For a given individual, new nodes are emitted at the same rate on all the axes, irrespective of their branching order. Flowering and branching alternate, and these processes occur in all the axes of the tree synchronously. On a stand level, flowering and branching occur regularly every 35 nodes or so, which apparently corresponds to an annual rhythm. Under nonlimiting conditions, a single branch tier would be emitted each year, and it is thus possible to determine a posteriori the age of a crown accurately. The merits of the method, the possibility of estimating the age of natural Cecropia obtusa regrowth by observing tree architecture, and the possible applications in the field of ecology are discussed.  相似文献   

9.
To investigate crown development patterns, branch architecture, branch-level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves ('bare' branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of 'leafy' parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch-level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first-order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch-level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species.  相似文献   

10.
不同光环境下木荷幼苗树冠结构的可塑性响应   总被引:1,自引:0,他引:1  
从冠形、侧枝和叶片在树冠中的空间分布等方面对天然更新木荷(Schima superba Gardn.et Champ.)幼苗的树冠结构进行了研究,认为木荷幼苗的树冠对光照条件的变化有显著的可塑性响应。随着光照水平的提高,幼苗树冠由阔、松散型向相对紧密、窄冠型发展,表明木荷幼苗对不同光照环境有较强的适应能力。木荷幼苗在强光环境下产生短枝,在适度荫庇条件下侧枝和主枝同时向上方和侧方伸长生长;在强度遮阴条件下,侧枝发生强烈的伸长生长并发生强烈的分枝行为,同时在不同自然环境条件下幼苗的叶片密度由全光、林隙到林冠下逐渐提高。随着光照水平的减弱,1级侧枝密度逐渐降低,分枝(2级侧枝和3级侧枝)强度却逐渐增大,且侧枝在树冠上的分布有向匕集中的趋势。  相似文献   

11.
LIGNUM is a functional-structural model that represents a treeusing four modelling units which closely resemble the real structureof trees: tree segments, tree axes, branching points and buds.Metabolic processes are explicitly related to the structuralunits in which they take place. Here we adapt earlier versionsof LIGNUM designed to model growth of conifers for use withbroad-leaved trees. Two primary changes are involved. First,the tree segment for broad-leaved trees consists of enclosedcylinders of heartwood, sapwood and bark. Leaves consistingof petioles and blades are attached to the segments. Secondly,axillary buds and rules governing their dormancy are includedin the model. This modified version of LIGNUM is used to simulatethe growth and form of sugar maple saplings in forest gaps.The annual growth of the model tree is driven by net productionafter respiration losses are taken into account. The productionrate of each leaf depends on the amount of photosyntheticallyactive radiation it receives. The radiation regime is trackedexplicitly in different parts of the tree crown using a modelof mutual shading of the leaves. Forest gaps are representedby changing the radiation intensity in different parts of themodel sky. This version of LIGNUM modified for use with broad-leaf,deciduous trees and parameterized for sugar maple, yields goodsimulations of growth and form in saplings from different forestgap environments. Copyright 2001 Annals of Botany Company LIGNUM, functional-structural tree model, tree architecture, sugar maple, modelling growth and form  相似文献   

12.
The ecological significance of architectural patterns for saplings ofFagus crenata andFagus japonica co-occurring in a secondary oak forest were evaluated by comparing the size and shape of leaves, trunks and crowns.Fagus japonica saplings were different fromF. crenata saplings in some architectural properties: (i) the leaf area and specific leaf area were larger; (ii) the ratio of sapling height to trunk length was lower, indicating greater leaning of the trunk; and (iii) the projection area of the crown was larger and the leaf area index lower indicating less mutual shading of leaves. These architectural features indicated thatF. japonica saplings were more shade tolerant thanF. crenata andF. crenata saplings were superior toF. japonica for growth in height and could, therefore, utilize sunlight in the upper layer. An erect trunk inF. crenata and a leaning trunk inF. japonica may be important characteristics associated with the regenerations patterns of each species; regeneration from seedlings under canopy gaps in the former and vegetative regeneration by sprouting in the latter.  相似文献   

13.
Trichon  Valérie 《Plant Ecology》2001,153(1-2):301-312
This paper assesses the potential of large-scale aerial photographs for the identification of rain forest trees. Colour slides at 1: 3000 scale were acquired in French Guiana, above the canopy of a 25 ha study site where trees had already been identified. Firstly, the stereoscopic analysis of photographic prints served to establish a typology of the crowns, based on seven main classes of criteria: crown size, crown status, crown contour, crown architecture, foliage cover, foliage texture and colour, completed where possible by information on phenology. The terminology chosen was based on those proposed in previous studies. Secondly, a smaller area of 5 ha was delimited in the field, on which 15 tree categories (vernacular names) represented by 5 crowns or more on the photographs were selected. For each category, a standard crown was described using terminology previously defined. Twelve tree categories, including first and second class commercial timbers, displayed specific characteristics allowing them to be identified on aerial photographs. Further analyses will be undertaken in the future to measure the success of this identification method. This method may be applied for the recognition of particular species of interest: commercial, rare, endemic or key-stone species. Phenological data, as well as information on crown architectural development, can also be retrieved from aerial photographs, bringing new prospects for a better knowledge of crowns biology and their functional role in the forest ecosystem.  相似文献   

14.
Different branching patterns and their repetitive expression during growth of woody plants can lead to different growth forms such as shrubs and trees, although they may also result in similar crown shapes. Recent work has shown that an integrated view of carbon gain, increment of biomass and its architectural arrangement in space is essential in assessing cost-benefit relationships of crown formation and structure, especially in situations where crowns compete for space and light.  相似文献   

15.
Self-supporting plant stems are slender, erect structures that remain standing while growing in highly variable mechanical environments. Such ability is not merely related to an adapted mechanical design in terms of material-specific stiffness and stem tapering. As many terrestrial standing animals do, plant stems regulate posture through active and coordinated control of motor systems and acclimate their skeletal growth to prevailing loads. This analogy probably results from mechanical challenges on standing organisms in an aerial environment with low buoyancy and high turbulence. But the continuous growth of plants submits them to a greater challenge. In response to these challenges, land plants implemented mixed skeletal and motor functions in the same anatomical elements. There are two types of kinematic design: (1) plants with localized active movement (arthrophytes) and (2) plants with continuously distributed active movements (contortionists). The control of these active supporting systems involves gravi- and mechanoperception, but little is known about their coordination at the whole plant level. This more active view of the control of plant growth and form has been insufficiently considered in the modeling of plant architecture. Progress in our understanding of plant posture and mechanical acclimation will require new biomechanical models of plant architectural development.  相似文献   

16.
The locations of the joint axes of the ankle complex vary considerably between subjects, yet no noninvasive method with demonstrated accuracy exists for locating these axes. The moments of muscle and ground reaction forces about the joint axes are dependent on axis locations, making knowledge of these locations critical to accurate musculoskeletal modeling of the foot and ankle. The accuracy of a computational optimization method that fits a two-revolute model to measured motion was assessed using computer-generated data, a two-revolute mechanical linkage, and three lower-leg cadaver specimens. Motions were applied to cadaver specimens under axial load while bone-mounted markers attached to the tibia, talus, and calcaneus were tracked using a video-based motion analysis system. Estimates of the talocrural and subtalar axis locations were computed from motions of the calcaneus relative to the tibia using the optimization method. These axes were compared to mean helical axes computed directly from tibia, talus, and calcaneus motions. The optimization method performed well when the motions were computer-generated or measured in the mechanical linkage, with angular differences between optimization and mean helical axes ranging from 1 deg to 5 deg. In the cadaver specimens, however, these differences exceeded 20 deg. Optimization methods that locate the anatomical joint axes of the ankle complex by fitting two revolute joints to measured tibia-calcaneus motions may be limited because of problems arising from non-revolute behavior.  相似文献   

17.
(1) Spatially explicit simulation of clonal plant growth is used to determine how ramet-level traits affect ramet density, spatial pattern of ramets and competitive ability of a clonal plant. The simulation model used combines elements of (i) an individual-based model of plant interactions, (ii) an architectural model of clonal plant growth, and (iii) a model of resource translocation within a set of physiologically integrated plant individuals. (2) The effects of two groups of parameters were studied: growth and resource acquisition parameters (resource accumulation, density-dependence of resource accumulation, resource translocation between ramets) and architectural rules (branching angle and probability of branching, internode length). The model was parameterised by values approximating those of clonally growing grasses as closely as possible. The basic parameter values were chosen from a short-turf grassland. Sensitivity analysis was carried out on relevant parameters around three basic points in the parameter space. Both single-species and two-species systems were studied. (3) It is shown that increasing resource acquisition and growth parameters increase ramet density, genet number and competitive ability. Translocation parameters and architectural parameters modify the effects of resource acquisition and growth, but their effect in single-species stands was smaller. (4) The simulations of species with fixed ramet sizes showed that ramet density in single-species stands cannot be used for predicting competitive ability. Increase in resource acquisition and growth parameters was correlated with an increase in equilibrium ramet density and competitive ability. Increasing branching angle, branching probability or internode length lead to an increased competitive ability, but did not affect equilibrium ramet density. Change of architectural parameters could therefore affect competitive ability independently of their effect on the final ramet density. (5) Spatial pattern both in single-species and two-species stands was also highly parameter-dependent. Changes in architectural parameters and in translocation usually lead to pronounced change in the spatial pattern; change in growth and resource acquisition parameters generally had little effect on spatial pattern.  相似文献   

18.
Tree architecture has important consequences for tree performance as it determines resource capture, mechanical stability and dominance over competitors. We analyzed architectural relationships between stem and crown dimensions for 13 dominant Iberian canopy tree species belonging to the Pinaceae (six Pinus species) and Fagaceae (six Quercus species and Fagus sylvatica) and related these architectural traits to wood density, shade tolerance and climatic factors. Fagaceae had, compared with Pinaceae, denser wood, saplings with wider crowns and adults with larger maximal crown size but smaller maximal height. In combination, these traits enhance light acquisition and persistence in shaded environments; thus, contributing to their shade tolerance. Pinaceae species, in contrast, had low-density wood, allocate more resources to the formation of the central trunk rather than to branches and attained taller maximal heights, allowing them to grow rapidly in height and compete for light following disturbances; thus, contributing to their high light requirements. Wood density had a strong relationship with tree architecture, with dense-wooded species having smaller maximum height and wider crowns, probably because of cheaper expansion costs for producing biomechanically stable branches. Species from arid environments had shorter stems and shallower crowns for a given stem diameter, probably to reduce hydraulic path length and assure water transport. Wood density is an important correlate of variation in tree architecture between species and the two dominant families, with potentially large implications for their resource foraging strategies and successional dynamics.  相似文献   

19.
BELL  A. D. 《Annals of botany》1979,43(2):209-223
Alpinia speciosa L. (Zingiberaceae) is a striking example ofa plant in which an organized architectural structure fulfilsa basic functional requirement - the economical explorationand exploitation of the substrate. This rhizomatous plant spreadslaterally in a predictable manner by vegetative growth to forma clone of separated ramets. A morphological study establishes‘rules of growth’ governing the success and failureof lateral branches (sympodial units), their lengths, and theirrelative angles. The basic branching pattern of this rhizome system approximatesto that of a hexagonal grid - the most economical structuralshape that uniformly ‘samples’ a plane surface.It is shown that the significant deviation of branching anglefound in Alpinia from that required to develop an exact hexagonalnetwork will virtually eliminate aerial shoot ‘clashes’in which the placing of one aerial shoot coincides with thatof another aerial shoot, whilst at the same time enhancing thebenefits of the hexagonal system. The broader implications ofthe organised architecture of plants are emphasised. rhizome, branching pattern, architecture, productivity  相似文献   

20.
To describe root system topology of Pinus halepensis and Cistus monspeliensis saplings co-inhabiting natural post-fire sites, 55 P. halepensis and 26 C. monspeliensis saplings were extracted by the total excavation method from a burnt pine stand. Seedlings were individually labelled when emerging after fire and extracted three years later, at the sapling phase. In order to evaluate the effect of inter-specific competition of C. monspeliensis on P. halepensis root system, a stratified sampling was carried out according to density and height of the saplings. Topological parameters considered in the analysis were magnitude, total external pathlength, and altitude of the root systems. Weight and length of roots were also measured in order to estimate the specific root length, an index commonly used in morphological studies. Results clearly evidenced greater variability in root system topology of P. halepensis than C. monspeliensis saplings. Herringbone architecture (i.e., the most ordered pattern possible, with branching confined to the main axis) characterised small pine saplings, regardless of competition from C. monspeliensis, which changed to random branching in large saplings. In medium sized saplings, the root system was affected by inter-specific competition, which delayed changes in root branching. In contrast, C. monspeliensis invariably adopted randomly branched architecture, regardless of intra-specific competition. It is concluded that such different topological patterns make C. monspeliensis more competitive during the early stages of post-fire succession, because its root system is much more transport-efficient in the nutrient-rich environment. Those pines which finally branch roots by random pattern will reach higher stem height and magnitude, a factor which allows them to successfully compete with C. monspeliensis for soil nutrients and water. The morphological analysis showed a significant increase in the specific root length with competition, both in P. halepensis and C. monspeliensis saplings, which could be interpreted as a consequence of the reduction of root diameter in response to nutrient depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号