首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A human T4+/Leu-8+ T cell clone (YA2) was established by phytohemagglutinin activation and interleukin 2 (IL 2) propagation. Functional characterization of this clone demonstrated that it provided potent help towards Ig production by pokeweed mitogen-stimulated B cells in the presence of small numbers of autologous T cells or by Staphylococcus aureus Cowan I (SAC)-activated B cells in the presence of B cell growth factor (BCGF). YA2 provided no help to resting B cells and minimal help to either unactivated B cells cultured with BCGF or SAC-activated B cells. Supernatant generated from clone YA2 by IL 2 stimulation had significant B cell differentiation activity but no BCGF or IL 2 activity. Thus, YA2 is a T4+/Leu-8+ potent direct helper only to B cells that are activated and proliferating due to its selective secretion of a differentiation factor, and not an activation and growth factor. The availability of phenotypically defined cloned populations of T cells with restricted functional helper activity related to the secretion of selected B cell tropic factors should prove useful in the dissection of the role of individual T cell subsets in the regulation of the human B cell cycle.  相似文献   

2.
We have investigated whether cell division is required for induction of Ig secretion from three types of B cells, which represent distinct activation states: normal splenic B cells, anti-Ig-treated B cells, and a monoclonal murine B cell tumor, BCL1. Polyclonal Ig secretion was stimulated in vitro by LPS or by lymphokines produced by EL-4 cells (EL-4 SN), which includes B cell growth factor II (BCGF II). LPS and EL-4 SN were mitogenic for all three cell populations and stimulated substantial IgM secretion from both B cells and anti-Ig blasts. Aphidicolin, a reversible inhibitor of DNA synthesis, abolished IgM secretion from B cells and anti-Ig blasts induced by either mitogen, indicating that Ig-secreting cells in these cultures are part of a cycling population. BCL1 tumor cells respond to BCGF II (but not to interleukin 2 or B cell stimulatory factor 1) with IgM secretion and cell division, allowing a direct assessment of the influence of BCGF II-stimulated cell division on secretion of IgM. Secretion by these cells during the first 24 hr of culture was not substantially affected by aphidicolin, but secretion at 48 or 72 hr was markedly inhibited. Culture of BCL1 cells for 48 hr with aphidicolin alone had no effect on cell viability or on subsequent responsiveness if the drug was removed, eliminating non-specific toxicity as an explanation of the drug's effect. Addition of aphidicolin during the last 24 hr of culture to either normal B cells or BCL1 cells was much less effective at inhibiting IgM secretion. These results indicate that the cells that secrete IgM in response to BCGF II also synthesize DNA when exposed to this factor. Thus, induction of high-rate Ig secretion from murine B cells by some stimuli, including BCGF II, may require at least one round of cell division.  相似文献   

3.
4.
A human T cell line, Peer, that expresses the T cell helper phenotype produces discrete activation and growth factors for tonsillar B cells. The B cell activation factor produced by Peer is biochemically and physiologically distinct from other lymphokines known to enhance B cell proliferation, namely, interleukin 1, interleukin 2, interferon, and previously characterized B cell growth factors (BCGF). The BCGF produced by Peer is functionally similar to previously described BCGF but has a m.w. of approximately 30,000 daltons. The identification and characterization of a T cell-derived activation factor that can induce apparently resting (Go phase) B cells to enter S phase in the absence of an exogenous first signal has important implications in the additional dissection of the complex steps in the human B cell cycle.  相似文献   

5.
We previously demonstrated the development of a cloned human T cell hybridoma that secretes B cell growth factor (BCGF) in the absence of demonstrable interleukin 2 or B cell differentiation factor. Sephadex gel filtration chromatography demonstrated the m.w. of this factor to be 18 to 20K. The present studies were performed to further characterize the biochemical properties of the molecule and to determine its target cell specificity. Temperature stability studies showed the monoclonal BCGF to be stable at 37 degrees C for 12 hr and at 70 degrees C for 15 min; however, most (93%) of the activity was lost after incubation at 70 degrees C for 30 min. Aliquots of hybridoma supernatant were exposed to buffer solutions with variable pH with no diminution in activity over a pH range of 4.0 to 10.0 BCGF activity was not affected by 2-mercaptoethanol, neuraminidase, or nucleic acid denaturing enzymes. In contrast, all activity was destroyed by 10 M urea, trypsin, and chymotrypsin. Chromatofocusing demonstrated the isoelectric point of BCGF to be 6.3 to 6.6. Finally, absorption experiments demonstrated that BCGF activity was absorbed by large, activated B cells. Mitogen-stimulated T cell blasts, small resting B cells, and CESS cells failed to absorb BCGF activity from the hybridoma supernatant. These and future studies with purified monoclonal human BCGF should enhance our understanding of its immunochemical properties and of its role in the immunoregulation of human B cell responses.  相似文献   

6.
The culture supernatants of Con A-activated human peripheral blood mononuclear cells (PBM) contained at least two regulatory factors upon B cell proliferation. One was B cell growth factor (BCGF), which activated antigen-stimulated B cells to proliferation and clonal expansion, and the other was its inhibitory factor, arbitrarily named B cell growth inhibitory factor (BIF). This BIF inhibited the effect of BCGF on anti-mu-stimulated B cells or the monoclonal mature B cell line (CLL-T.H.) obtained from the peripheral blood lymphocytes of B cell-type chronic lymphocytic leukemia patients, which were activated only with BCGF and without adding other proliferating stimuli (e.g., anti-mu). BIF activity was detected in the 24 hr culture supernatants of Con A-activated human PBM in FCS containing medium and also in serum-free RPMI 1640 medium. This substance with BIF activity could not be derived from FCS. Con A-induced BIF (m.w. of 80,000 and an isoelectric point of pH 5.4) was analyzed by Sephadex G-200 gel filtration and chromatofocusing. BIF was stable at pH 2.0 and at 56 degrees C for 30 min. Partially purified BIF had no effect on cell viability and almost no interferon activity (less than 1 IU/ml). BIF with high titer had a slight but significant inhibition on TCGF-dependent T cell growth and on PHA or Con A responses, but the extent of these inhibitions was far less than that of BCGF-dependent B cell growth. Absorption of BIF with Con A blasts made its inhibition on T cell growth even less. On the other hand, BIF activity could not be absorbed with Con A blasts but was almost absorbed with large numbers of CLL-T.H. cells. BIF had almost no inhibitory effect on the proliferation of a mouse fibroblast cell line (NIH 3T3), a mouse myeloma cell line (NS-1), human lymphoid cell lines (MOLT-4, HSB-2, and Daudi), or a human myeloid cell line (K-562). BIF-producing cells were estimated to be T cells and were identified as T8+ T cells. On the other hand, Con A-induced BCGF was demonstrated to be produced predominantly by T4+ T cells. These results show that human B cell proliferation is regulated by interaction between T4+ and T8+ cells via soluble factors, namely BCGF and BIF, respectively.  相似文献   

7.
T cells from highly atopic individuals spontaneously secrete in vitro a factor that specifically induces IgE synthesis from normal human B cells. We investigated the effects of such T cell supernatants derived from atopic individuals (TCSN-A) on functionally distinct B cell subsets to determine at what developmental stage B cells become responsive to this IgE-enhancing activity. B cells from normal and allergic donors were separated into subsets of small resting and large activated cells by density centrifugation or unit gravity sedimentation. When stimulated by TCSN-A, large activated B cells made more IgE than small resting B cells. The difference was as much as 3300% in comparing these subsets from allergic donors. Similarly, resting B cells stimulated by Staphylococcus aureus Cowan I (SAC) made 52 to 125% more IgE in response to TCSN-A than unstimulated small resting B cells. However, IgE production from large B cells, already activated in vivo, was not enhanced by the addition of SAC. Notably, the IgE level synthesized by in vivo large activated B cells from allergic persons was markedly greater than that seen with similar cells from normal donors, whereas resting B cells purified from allergic and normal donors produced comparable levels of IgE in response to TCSN-A. These results suggest that this enhancing activity functions as an IgE differentiation factor for activated B cells. This was further confirmed by the effects of TCSN-A on the IgM- and IgE-secreting EBV-transformed human B cell line K1D5. TCSN-A specifically enhanced IgE synthesis from these cells; TCSN from normal donors, IL 2, IFN-gamma, and BCGF did not. These results confirm that this activity functions as an IgE-specific differentiation factor, directly influencing activated B cells to synthesize IgE.  相似文献   

8.
The effects of interleukin 1 on human B cell activation and proliferation   总被引:19,自引:0,他引:19  
The precise role of B cell surface immunoglobulin (slg) in the activation of B cells is unclear at present. In particular, it is uncertain whether ligands interacting with the B cell slg suffice to induce proliferation, or simply induce a state of activation in which the B cell becomes responsive to growth factors made by accessory cells. We have examined the effects of two ligands, Staphylococcus aureus Cowan strain I (SAC) and antihuman mu chain (anti-mu), which interact with B cell slg on highly purified human peripheral blood and tonsillar B cells cultured at low cell concentrations. The effects on B cell proliferation of these ligands alone or in combination with highly purified interleukin 1 (IL 1) or a supernatant of a human T-T hybridoma containing a B cell growth factor (BCGF) were studied. SAC with its high cell wall content of protein A triggered maximal B cell proliferation which was not increased further by IL 1 or BCGF. High concentrations of soluble F(ab')2 fragments of goat anti-mu chain also induced significant B cell proliferation. Lower concentrations of anti-mu resulted in little or no B cell proliferation but activated the B cell to a state of responsiveness to both IL 1 and BCGF. IL 1 by itself had no effect on the proliferation of unstimulated B cells or on the proliferation of in vivo-activated B cells which responded to BCGF in vitro, but demonstrated clear synergy with low concentrations of anti-mu antibody. BCGF alone augmented the proliferation of unstimulated B cells, presumably by acting on B cells which had undergone some degree of activation in vivo. In addition, it showed marked synergy with anti-mu antibody, which resulted in proliferation similar in magnitude to that induced by SAC. This synergy was far greater than that seen between anti-mu antibody and IL 1, and the resulting proliferative response was only slightly increased by the presence of IL 1. We conclude that the importance of accessory cell factors for the initial rounds of B cell proliferation depends on the strength of the initial slg-mediated activation signal. When this is strong, the response is maximal and independent of accessory cells or accessory cell factors. When it is suboptimal, a moderate synergy is seen with IL 1 and a dramatic synergy with BCGF.  相似文献   

9.
The human lymphoblastoid cell line we present here proliferated in response to a 14,000 m.w. B cell growth factor (BCGF), and not to interleukin 2 (IL 2). This cell line, designated B-A3, was established by Epstein Barr virus (EBV) transformation of Staphylococcus aureus Cowan I (SAC)-activated spleen B cells, and has been maintained in RPMI 1640 medium complemented with 15% fetal calf serum (FCS) without the addition of other exogenous growth factors. A proliferative response, as measured by [3H]thymidine uptake of B-A3 cells was significantly induced by either commercial IL 2-free human BCGF preparations, or phytohemagglutinin-stimulated mixed lymphocyte culture supernatant at all FCS concentrations used in the assay. The most marked proliferation due to BCGF, however, was observed in the absence of FCS. This BCGF-induced proliferation was not influenced by IL 2 or interferon-gamma (IFN-gamma), because both recombinant IL 2 and IFN-gamma failed to induce proliferation. The response of B-A3 cells to a specific BCGF was additionally indicated by the responsiveness of this cell line to BCGF purified by a series of chromatographic steps. The BCGF to which B-A3 cells responded had a m.w. of 14,000 and was similar to low m.w. BCGF reported from other laboratories. Surface characterization of B-A3 cells, analyzed by flow cytometry with a panel of monoclonal antibodies, demonstrated that the majority of B-A3 cells were stained positively with Leu-12, HLA-DR, and surface IgG markers, whereas staining with surface IgM, IgD markers, pan T cell markers (Leu-4 and Leu-9), and IL 2 receptor (Tac) were consistently negative. Taken together, the human lymphoblastoid cell line we present here responded specifically to a low m.w. BCGF. This cell line may be of value in the purification of BCGF to homogeneity, in studies of the interactions of BCGF with human B cells, and in the identification of the BCGF receptor.  相似文献   

10.
To further characterize a human B-cell growth factor (BCGF) produced by phytohemagglutinin (PHA) P-stimulated peripheral blood T cells, a partially purified preparation of this material was tested in a number of murine assays for B-cell stimulatory factors (BSF). Human BCGF lacked murine BSF-1 activity as assessed via the induction of polyclonal proliferation of anti-IgM-stimulated murine B cells; however, this material consistently augmented the proliferative response of murine B cells to anti-IgM and a saturating dose of murine BSF-1. Human BCGF also induced proliferation in unstimulated murine B cells, and augmented the proliferative response of dextran sulfate activated murine B cells. Human BCGF is therefore capable of causing proliferation of unstimulated and activated murine B cells, and by these criteria closely resembles murine BCGF II. In contrast to murine BCGF II, however, human BCGF failed to stimulate proliferation or immunoglobulin (Ig) secretion by murine BCL1 B lymphoma cells. A murine analog of this human BCGF showing the same pattern of biological responses was found in concanavalin A-stimulated supernatants of the murine MB2.1 T-cell line and D9-Cl T-cell hybridoma. The active component of the human BCGF preparation was not due to contaminating PHA, interleukin 1, interleukin 2; interferon-gamma, or endotoxin. Comparison between the above human BCGF and a commonly used source of murine BCGF II, i.e., supernatant from antigen-stimulated D10.G4.1 T cells, provided information suggestive of BCGF II heterogeneity. Both human BCGF and D10.G4.1 supernatant caused proliferation of unstimulated and dextran sulfate-stimulated murine B cells; however, only the human BCGF preparation augmented the proliferative response of murine B cells to anti-IgM and a saturating dose of murine BSF-1, and only the D10.G4.1 supernatant stimulated BCL1 cell proliferation and immunoglobulin secretion. The data therefore indicate that the different assays for BCGF II used in this study respond to different factors, and suggest the existence of two BCGF II-like activities.  相似文献   

11.
The modulation of membrane Ia on human B lymphocytes   总被引:2,自引:0,他引:2  
Using flow cytometry techniques, changes in surface Ia (DR and DS) expression on human B lymphocytes were correlated with changes in the cell cycle following stimulation with anti-mu. The effect of interleukin (IL)-1, IL-2, B-cell growth factor (BCGF), and interferons on Ia expression on resting B cells was also examined. A population of resting B lymphocytes was cultured in vitro with 100 micrograms/ml of anti-mu and immunofluorescently stained for DR and DS at various times following stimulation. Detectable increases in DR and DS expression were found within 8 hr, and the major increases (twofold and fourfold) in DR and DS expression occurred over the next 48 hr. Using cell cycle inhibitors and propidium iodide staining, it was demonstrated that the enhanced DR and DS expression following anti-mu stimulation began during G0 to G1 transition and increased as the cells progressed through G1 phase. During S and G2/M phases, there were minimal further increases in surface Ia. Although prolonged exposure of B cells to anti-mu was required for cellular activation, cell size enlargement, and progression into S phase, a brief exposure to anti-mu, insufficient for cellular activation, markedly enhanced Ia expression. Thus anti-mu-stimulated resting human B lymphocytes rapidly increase their surface Ia expression. This increase occurs predominantly prior to entrance into S phase and can occur in the absence of significant cellular activation. Interferons have been reported to modulate surface Ia expression on a human lymphoid cell line and on monocytes and supernatants with BCGF activity to enhance surface Ia expression on murine B cells; however, neither alpha-interferon, gamma-interferon, IL-1, IL-2, nor BCGF modified surface DR expression on normal resting human B cells.  相似文献   

12.
We have previously identified two BCGF II-like factors which can be distinguished by their differential reactivity in several murine BCGF II assays. Prototype sources of these two factors are a partially purified preparation derived from PHA-P-stimulated human peripheral blood T lymphocytes (designated human BCGF), and supernatant from antigen-stimulated D10.G4.1 murine T cells (designated D10 sup). Extending the characterization of these two factors, we show here that human BCGF and D10 sup both cause tritiated thymidine ([3H]TdR) incorporation and IgM secretion by T cell-depleted, in vivo-activated, large murine B cells. In contrast, only the human BCGF consistently induced proliferation and IgM secretion by T cell-depleted, small murine B cells. When simultaneously added to cultures, D10 sup and human BCGF synergized to produce optimal IgM secretion by large murine B cells and murine BCL1 B lymphoma cells. The same factors were tested in an IgM-specific plaque assay, and a similar synergistic response was observed for the large B cells, but not for the BCL1 cells. The combination of factors also produced maximal [3H]TdR incorporation by large murine B cells. In contrast, the addition of human BCGF totally abrogated D10 sup-induced BCL1 proliferation. Together, these data suggest that the synergies observed in IgM secretion result from an increased production of plaque-forming cells (PFC) in cultures of large B cells and an increase in IgM production per responding cell in BCL1 cells. Kinetic analysis of the time of action of the two BCGF II-like lymphokines in the induction of the PFC response by large B cells indicated that human BCGF was required within the first 24 hr of a 4-day culture period, while D10 sup could be added as late as the final 15 hr without significant diminution of the response. In summary, these data provide further support for the existence of two distinct B cell stimulatory factors which cause growth and differentiation of activated B cells, and indicate that these two factors synergize to produce optimal Ig secretion. For ease of discussion, the activity in the human BCGF preparation is referred to as BCGF IIA, and the activity in D10 sup is referred to as BCGF IIB.  相似文献   

13.
The effects of recombinant interleukin 2 (IL-2) and high m.w. (HMW) B cell growth factor (BCGF) were examined on normal human peripheral blood B cells activated with Staphylococcus aureus Cowan I (SAC). When SAC-activated B cells were separated into Tac-antigen (Tac-Ag)+ and Tac-Ag- fractions by a cell sorter, recombinant IL-2 induced only the Tac-Ag+ cells to proliferate, whereas both Tac-Ag+ and Tac-Ag- cells responded to HMW-BCGF (m.w. 60,000). Alternatively, SAC-activated B cells were separated according to density into three fractions: low density (large) cells (82 +/- 15% Tac-Ag+), intermediate density (medium) cells (45 +/- 13% Tac-Ag+), and high density (small) cells (less than 5% Tac-Ag+). Recombinant IL-2 enhanced proliferation of low density cells the most, intermediate density cells less, and high density cells not at all. HMW-BCGF induced all three fractions to proliferate to approximately the same degree. Finally, the effects of IL-2 and BCGF on the DNA and RNA content of the various fractions of B cells was examined. RNA content was greater in IL-2-stimulated B cells than BCGF-stimulated B cells, whereas DNA content was the same in both cell populations. IL-2 and BCGF may preferentially interact with different subpopulations of B cells. The interaction of IL-2 or BCGF with normal activated B cells may induce both similar and different intracellular events.  相似文献   

14.
A high m.w. B cell growth factor (50,000 BCGF) prepared from lectin-activated human peripheral blood lymphocyte culture supernatants acts only on B cells preactivated by a first signal. This first signal can be delivered in vitro (with anti-mu antibody (Ab)) or in vivo. Upon costimulation with anti-mu Ab the 50,000 BCGF induces an early and transient proliferative response, whereas the response to interleukin 2 (IL-2) develops more progressively. To determine the respective targets of the 50,000 BCGF and of IL-2, B cells were activated with anti-mu Ab and separated according to the expression of the IL-2 receptor (cluster designation (CD)25 antigen). CD25+ B cells do not respond to the 50,000 BCGF and do not acquire this responsiveness after an additional culture with IL-2. CD25- B cells respond to the 50,000 BCGF and not to IL-2. However, when CD25- B cells are cultured for 3 days with the 50,000 BCGF they become responsive to IL-2. These results demonstrate a pathway of B cell activation based on the ordered and sequential action of anti-mu Ab, the 50,000 BCGF, and IL-2.  相似文献   

15.
《Cellular immunology》1985,90(1):32-40
Human B lymphocytes, purified from the peripheral blood of several different donors can be pooled, frozen, and stored in liquid nitrogen to provide an easy and reproducible source of cells for mitogenic assays. These B cell preparations did not show any reactivity to T cell mitogens, but responded to Staphylococcus aureus Cowan strain 1 (SAC) and anti-IgM antibodies to the same extent as freshly purified B cells. When stimulated with either anti-IgM antibodies or SAC, these B cells became responsive to B cell growth factor (BCGF), allowing a quantitative measurement of this important lymphokine activity. In addition, we have studied the reactivity of frozen B lymphocytes to various combinations of activators. We have confirmed that phorbol myristate acetate (PMA) was a very potent mitogenic agent for preactivated human B cells and shown that bacterial lipopolysaccharide (LPS), although not mitogenic by itself, could synergize with anti-IgM antibodies to yield increased levels of stimulation. Furthermore experiments using the lysosomotropic agent leucine methyl ester showed that the action of LPS on anti-IgM-stimulated B cells did not require the presence of functional monocytes. Neither PMA nor LPS could induce BCGF responsiveness and thus these two compounds can be considered exclusive step 2 activators for human peripheral blood B cells.  相似文献   

16.
The effects of a preparation containing partially purified, EL4-derived B cell growth factor(s) (BCGF) on B cell growth and proliferation have been examined by using B lymphocyte subpopulations separated on the basis of size. BCGF was found to maintain and enhance proliferation of a significant proportion of large activated B cells. In contrast, small resting B cells required the presence of BCGF and a second stimulus such as anti-IgM antibody (anti-mu) to be induced to proliferate. This disparity was not due to a lack of an effect of BCGF on small resting B cells. A factor contained within the partially purified EL4 supernatant produced time-dependent increases in cell size and RNA content in all subpopulations. These effects were independent of possible effects due to contaminating lymphokines such as interleukin 2 (IL 2), concanavalin A (Con A), and phorbol myristate acetate (PMA). Nonmitogenic doses of lipopolysaccharide (LPS) failed to show similar effects. Our data suggest that B cells at all levels of in vivo activation are responsive to stimulation by a growth factor present in EL4 supernatant, as manifested by cell growth and RNA synthesis. This activity has not previously been described for BCGF preparations. However, because the partially purified, EL4-derived supernatant used as BCGF in these studies has not been purified to homogeneity, we cannot conclude whether the factors that induce resting B cells to increase in size are the same as the growth factors that synergize with anti-mu to induce B cell proliferation or that maintain the proliferation of activated B cells.  相似文献   

17.
Mouse B lymphocytes were stimulated at high cell concentrations with goat anti-IgM antibodies, which leads to the induction of B cell proliferation without the addition of any growth factors. After 48 hr, blast cells were purified and cultured at low cell concentrations. Proliferation and differentiation of purified B lymphocyte blasts is then dependent on the addition of either mitogens (e.g., LPS) or certain lymphokines derived from activated T cells or macrophages. One such lymphokine was isolated from supernatants of various activated T cells and characterized by gel filtration as a material with an apparent m.w. of 40,000 to 50,000, similar to BCGF II. It supports the proliferation of the B cell blasts and induces their differentiation into plaque-forming cells. Lymphokines such as BCGF I, interleukin 2, and BCDF gamma could neither maintain growth nor induce differentiation of B lymphocytes preactivated by goat anti-IgM.  相似文献   

18.
This paper demonstrates that B cell lines, as well as normal activated B cells generate and respond to B cell-specific growth factor(s) (BCGF). BCGF derived from B cells (B-BCGF) appears to be distinct from interleukin 1, interleukin 2 (IL 2), B cell stimulatory factor, BCGF-II, interferon-gamma, or transforming growth factor. It acts on activated B cells, but not on resting G0 phase B cells to induce proliferation. B cell lines, immortalized by Epstein-Barr virus, constitutively secrete 10-fold higher level of B-BCGF compared with normal activated B cells, suggesting that an activated autocrine loop might be operating in immortalized B cells. On the basis of our observations, we postulate that B cell clonal expansion may occur, at least in part, through a B-BCGF-dependent autocrine pathway similar to IL 2 effect on T cells.  相似文献   

19.
The growth and differentiation of B cells to immunoglobulin (Ig)-secreting cells is regulated by a variety of soluble factors. This study presents data that support a role for transforming growth factor (TGF)-beta in this regulatory process. B lymphocytes were shown to have high-affinity receptors for TGF-beta that were increased fivefold to sixfold after in vitro activation. The addition of picogram quantities of TGF-beta to B cell cultures suppressed factor-dependent, interleukin 2 (IL 2) B cell proliferation and markedly suppressed factor-dependent (IL 2 or B cell differentiation factor) B cell Ig secretion. In contrast, the constitutive IgG production by an Epstein Barr virus-transformed B cell line was not modified by the presence of TGF-beta in culture. This cell line was found to lack high-affinity TGF-beta receptors. The degree of inhibition of B cell proliferation observed in in vitro cultures was found to be dependent not only on the concentration of TGF-beta added but also on the concentration of the growth stimulatory substance (IL 2) present. By increasing the IL 2 concentrations in culture, the inhibition of proliferation induced by TGF-beta could be partially overcome. In contrast, the inhibition of Ig secretion induced by TGF-beta could not be overcome by a higher concentration of stimulatory factor, demonstrating that the suppression of B cell differentiation by TGF-beta is not due solely to its effects on proliferation. Furthermore, it was demonstrated that B lymphocytes secrete TGF-beta. Unactivated tonsillar B cells had detectable amounts of TGF-beta mRNA on Northern blot analysis, and B cell activation with Staphylococcus aureus Cowan (SAC) resulted in a twofold to threefold increase in TGF-beta mRNA. Supernatants conditioned by unactivated B cells had small amounts of TGF-beta, SAC activation of the B cells resulted in a sixfold to sevenfold increase in the amount of TGF-beta present in the supernatants. Thus, B lymphocytes synthesize and secrete TGF-beta and express receptors for TGF-beta. The addition of exogenous TGF-beta to cultures of stimulated B cells inhibits subsequent proliferation and Ig secretion. TGF-beta may function as an autocrine growth inhibitor that limits B lymphocyte proliferation and ultimate differentiation.  相似文献   

20.
After activation, B cells express the IL 2 receptor as determined by their reactivity with monoclonal anti-IL 2 receptor antibodies. In this report we show that anti-IL 2 receptor antibodies precipitated comparable 60,000 to 65,000 dalton proteins from highly purified B and T cells. Limited peptide mapping suggested that the receptors on B and T cells were identical. Moreover, activated B cells could be induced to proliferate by IL 2, but not to secrete Ig. Anti-IL 2R antibody blocked the effect of IL 2 but not the proliferative response induced by B cell growth factor (BCGF), suggesting independent growth factor receptors. Investigation of the kinetics of the B cell response to growth factor indicated that BCGF acts within 24 hr, whereas IL 2 was virtually devoid of activity for 48 hr. Nevertheless, after 72 to 96 hr, the effect of IL 2 was equal to or greater than that obtained with BCGF. These studies suggest that the initial stages of B cell proliferation involves a sequential interaction of BCGF and IL 2 with their respective receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号