首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
When exposed to 254-nm UV, spores of Encephalitozoon intestinalis, Encephalitozoon cuniculi, and Encephalitozoon hellem exhibited 3.2-log reductions in viability at UV fluences of 60, 140, and 190 J/m2, respectively, and demonstrated UV inactivation kinetics similar to those observed for endospores of DNA repair-defective mutant Bacillus subtilis strains used as biodosimetry surrogates. The results indicate that spores of Encephalitozoon spp. are readily inactivated at low UV fluences and that spores of UV-sensitive B. subtilis strains can be useful surrogates in evaluating UV reactor performance.  相似文献   

2.
Recent bioterrorism concerns have prompted renewed efforts towards understanding the biology of bacterial spore resistance to radiation with a special emphasis on the spores of Bacillus anthracis. A review of the literature revealed that B. anthracis Sterne spores may be three to four times more resistant to 254-nm-wavelength UV than are spores of commonly used indicator strains of Bacillus subtilis. To test this notion, B. anthracis Sterne spores were purified and their UV inactivation kinetics were determined in parallel with those of the spores of two indicator strains of B. subtilis, strains WN624 and ATCC 6633. When prepared and assayed under identical conditions, the spores of all three strains exhibited essentially identical UV inactivation kinetics. The data indicate that standard UV treatments that are effective against B. subtilis spores are likely also sufficient to inactivate B. anthracis spores and that the spores of standard B. subtilis strains could reliably be used as a biodosimetry model for the UV inactivation of B. anthracis spores.  相似文献   

3.
Bacillus subtilis strains containing deletions in the genes coding for one or two of the major small, acid-soluble spore proteins (SASP; termed SASP-alpha and SASP-beta) were constructed. These mutants sporulated normally, but the spores lacked either SASP-alpha, SASP-beta, or both proteins. The level of minor SASP did not increase in these mutants, but the level of SASP-alpha increased about twofold in the SASP-beta- mutant, and the level of SASP-beta increased about twofold in the SASP-alpha- mutant. The growth rates of the deletion strains were identical to that of the wild-type strain in rich or poor growth media, as was the initiation of spore germination. However, outgrowth of spores of the SASP-alpha(-)-beta- strain was significantly slower than that of wild-type spores in all media tested. The heat resistance of SASP-beta- spores was identical to that of wild-type spores but slightly greater than that of SASP-alpha- and SASP-alpha(-)-beta- spores. However, the SASP-alpha- and SASP-alpha(-)-beta- spores were much more heat resistant than vegetative cells. The UV light resistances of SASP-beta- and wild-type spores were also identical. However, SASP-alpha(-)-beta- spores were slightly more sensitive to UV light than were log-phase cells of the wild-type or SASP-alpha(-)-beta- strain (the latter have identical UV light resistances); SASP-alpha- spores were slightly more UV light resistant than SASP-alpha(-)-beta- spores. These data strongly implicate SASP, in particular SASP-alpha, in the UV light resistance of B. subtilis spores.  相似文献   

4.
Alpha/beta-type small, acid-soluble spore proteins (SASP) are essential for the resistance of DNA in spores of Bacillus species to damage. An alpha/beta-type SASP, Ssp2, from Clostridium perfringens was expressed at significant levels in B. subtilis spores lacking one or both major alpha/beta-type SASP (alpha- and alpha- beta- strains, respectively). Ssp2 restored some of the resistance of alpha- beta- spores to UV and nitrous acid and of alpha- spores to dry heat. Ssp2 also restored much of the resistance of alpha- spores to nitrous acid and restored full resistance of alpha- spores to UV and moist heat. These results further indicate the interchangeability of alpha/beta-type SASP in DNA protection in spores.  相似文献   

5.
AIMS: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using formaldehyde gas. METHODS AND RESULTS: B. anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to approx. 1100 ppm formaldehyde gas for 10 h. Formaldehyde exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with B. subtilis (galvanized metal and painted wallboard paper) and G. stearothermophilus (industrial carpet and painted wallboard paper). Formaldehyde gas inactivated>or=50% of the biological indicators and spore strips (approx. 1x10(6) CFU) when analyzed after 1 and 7 days. CONCLUSIONS: Formaldehyde gas significantly reduced the number of viable spores on both porous and nonporous materials in which the two surrogates exhibited similar log reductions to that of B. anthracis on most test materials. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide new comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using formaldehyde gas.  相似文献   

6.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) constitutes approximately 10% of Bacillus subtilis spore dry weight and has been shown to play a significant role in the survival of B. subtilis spores exposed to wet heat and to 254-nm UV radiation in the laboratory. However, to date, no work has addressed the importance of DPA in the survival of spores exposed to environmentally relevant solar UV radiation. Air-dried films of spores containing DPA or lacking DPA due to a null mutation in the DPA synthetase operon dpaAB were assayed for their resistance to UV-C (254 nm), UV-B (290 to 320 nm), full-spectrum sunlight (290 to 400 nm), and sunlight from which the UV-B portion was filtered (325 to 400 nm). In all cases, air-dried DPA-less spores were significantly more UV sensitive than their isogenic DPA-containing counterparts. However, the degree of difference in UV resistance between the two strains was wavelength dependent, being greatest in response to radiation in the UV-B portion of the spectrum. In addition, the inactivation responses of DPA-containing and DPA-less spores also depended strongly upon whether spores were exposed to UV as air-dried films or in aqueous suspension. Spores lacking the gerA, gerB, and gerK nutrient germination pathways, and which therefore rely on chemical triggering of germination by the calcium chelate of DPA (Ca-DPA), were also more UV sensitive than wild-type spores to all wavelengths tested, suggesting that the Ca-DPA-mediated spore germination pathway may consist of a UV-sensitive component or components.  相似文献   

7.
Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance.  相似文献   

8.
Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance.  相似文献   

9.
Spores and vegetative cells of Bacillus subtilis strains with various defects in DNA-repair capacities (hcr-, ssp-, hcr-ssp-) were irradiated with UV radiation or X-rays. Induced mutation frequency was determined from the observed frequency of prototrophic reversion of a suppressible auxotrophic mutation. At equal physical dose, after either UV- or X-irradiation, spores were more resistant to mutations as well as to killing than were vegetative cells. However, quantitative comparison revealed that, at equally lethal doses, spores and vegetative cells were almost equally mutable by X-rays whereas spores were considerably less mutable by UV than were vegetative cells. Thus, as judged from their mutagenic efficiency relative to the lethality, X-ray-induced damage in the spore DNA and the vegetative DNA were equally mutagenic, while UV-induced DNA photoproducts in the spore were less mutagenic than those in vegetative cells. Post-treatment of UV-irradiated cells with caffeine decreased the survival and the induced mutation frequency for either spores or vegetative cells for all the strains. In X-irradiated spores, however, a similar suppressing effect of caffeine was observed only for mutability of a strain lacking DNA polymerase I activity.  相似文献   

10.
AIMS: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. METHODS AND RESULTS: Bacillus anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to > or =1000 ppm hydrogen peroxide gas for 20 min. Hydrogen peroxide exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials except G. stearothermophilus on industrial carpet. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with both surrogates. The effectiveness of gaseous hydrogen peroxide on the growth of biological indicators and spore strips was evaluated in parallel as a qualitative assessment of decontamination. At 1 and 7 days postexposure, decontaminated biological indicators and spore strips exhibited no growth, while the nondecontaminated samples displayed growth. CONCLUSIONS: Significant differences in decontamination efficacy of hydrogen peroxide gas on porous and nonporous surfaces were observed when comparing the mean log reduction in B. anthracis spores with B. subtilis and G. stearothermophilus spores. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using hydrogen peroxide gas.  相似文献   

11.
Spores of Bacillus subtilis strains which carry deletion mutations in one gene (sspA) or two genes (sspA and sspB) which code for major alpha/beta-type small, acid-soluble spore proteins (SASP) are known to be much more sensitive to heat and UV radiation than wild-type spores. This heat- and UV-sensitive phenotype was cured completely or in part by introduction into these mutant strains of one or more copies of the sspA or sspB genes themselves; multiple copies of the B. subtilis sspD gene, which codes for a minor alpha/beta-type SASP; or multiple copies of the SASP-C gene, which codes for a major alpha/beta-type SASP of Bacillus megaterium. These findings suggest that alpha/beta-type SASP play interchangeable roles in the heat and UV radiation resistance of bacterial spores.  相似文献   

12.
We examine whether the rate of delivery of photons from a UV radiation source has an effect on the inactivation of spores. We directly compare the output of a high-peak-power UV laser source at 248 nm to a low-power continuous lamp source (254 nm) in the inactivation of Bacillus subtilis spores. The two UV sources differ by a factor of 10(8) in peak power. Contrary to previous reports, no clear differences in spore survival were observed.  相似文献   

13.
The heat and UV light resistance of spores and vegetative cells of Bacillus subtilis BD170 (rec+) were greater than those of B. subtilis BD224 (recE4). Strain BD170 can repair DNA whereas BD224 is repair deficient due to the presence of the recE4 allele. Spores of a GSY Rec+ strain were more heat resistant than spores of GSY Rec- and Uvr- mutants. The overall level of heat and UV light resistance attained by spores may in part be determined by their ability to repair deoxyribonucleic acid after exposure to these two physical mutagens.  相似文献   

14.
The first ~10% of spores released from sporangia (early spores) during Bacillus subtilis sporulation were isolated, and their properties were compared to those of the total spores produced from the same culture. The early spores had significantly lower resistance to wet heat and hypochlorite than the total spores but identical resistance to dry heat and UV radiation. Early and total spores also had the same levels of core water, dipicolinic acid, and Ca and germinated similarly with several nutrient germinants. The wet heat resistance of the early spores could be increased to that of total spores if early spores were incubated in conditioned sporulation medium for ~24 h at 37°C (maturation), and some hypochlorite resistance was also restored. The maturation of early spores took place in pH 8 buffer with Ca(2+) but was blocked by EDTA; maturation was also seen with early spores of strains lacking the CotE protein or the coat-associated transglutaminase, both of which are needed for normal coat structure. Nonetheless, it appears to be most likely that it is changes in coat structure that are responsible for the increased resistance to wet heat and hypochlorite upon early spore maturation.  相似文献   

15.
The heat resistance of Bacillus subtilis 5230 and A spores freeze dried and suspended in buffer or oils was investigated. As expected, spores were more resistant to heat when suspended in oils than in buffer. This was ascribed to the low a w of oils and to their content of free fatty acids. Linear survivor curves were obtained for spores suspended in buffer at 105°C or above and for B. subtilis A spores suspended in a vegetable oil. However, the survivor curves of the spores suspended in mineral oil (strain 5230) or olive oil (both strains) were concave upward with a characteristic tailing. The tailing could not be ascribed to spore clumping or to a specific heat injury that can be circumvented by Ca-dipicolinate. It is possibly due to another mechanism of injury or to the activation at high temperature of a normally dormant germination system.  相似文献   

16.
To determine how long waterborne spores of Encephalitozoon cuniculi, E. hellem, and E. intestinalis could survive at environmental temperatures, culture-derived spores were stored in water at 10, 15, 20, 25, and 30 C and tested for infectivity in monolayer cultures of Madin Darby bovine kidney (MDBK) cells. At 10 C, spores of E. intestinalis were still infective after 12 mo, whereas those of E. hellem and E. cuniculi were infective for 9 and 3 mo, respectively. At 15 C, spores of the same species remained infective for 10, 6, and 2 mo, and at 20 C, for 7, 5, and 1 mo, respectively. At 25 C, spores of E. intestinalis and E. hellem were infective for 3 mo, but those of E. cuniculi were infective for only 3 wk. At 30 C, the former 2 species were infective for 3 wk and 1 mo, respectively, and the latter species for only 1 wk. These findings indicate that spores of different species of Encephalitozoon differ in their longevity and temperature tolerance, but at temperatures from 10 to 30 C, all 3 have the potential to remain infective in the environment long enough to become widely dispersed.  相似文献   

17.
This study demonstrated that fresh food produce, such as berries, sprouts, and green-leafed vegetables, sold at the retail level can contain potentially viable microsporidian spores of human-virulent species, such as Enterocytozoon bieneusi, Encephalitozoon intestinalis, and Encephalitozoon cuniculi, at quantities representing a threat of food-borne infection.  相似文献   

18.
To determine how long spores of Encephalitozoon cuniculi, E. hellem, and E. intestinalis remain viable in seawater at environmental temperatures, culture-derived spores were stored in 10, 20, and 30 ppt artificial seawater at 10 and 20 C. At intervals of 1, 2, 4, 8, and 12 wk, spores were tested for infectivity in monolayer cultures of Madin Darby bovine kidney cells. Spores of E. hellem appeared the most robust, some remaining infectious in 30 ppt seawater at 10 C for 12 wk and in 30 ppt seawater at 20 C for 2 wk. Those of E. intestinalis were slightly less robust, remaining infectious in 30 ppt seawater at 10 and 20 C for 1 and 2 wk, respectively. Spores of E. cuniculi remained infectious in 10 ppt seawater at 10 and 20 C for 2 wk but not at higher salinities. These findings indicate that the spores of the 3 species of Encephalitozoon vary in their ability to remain viable when exposed to a conservative range of salinities and temperatures found in nature but, based strictly on salinity and temperature, can potentially remain infectious long enough to become widely dispersed in estuarine and coastal waters.  相似文献   

19.
By employing 4-methylumbelliferyl-beta-D-NN',N"-triacetylchitotriose substrate in a semi quantitative assay, chitinolytic activity in viable spores of Encephalitozoon cuniculi and E. intestinalis was detected and dependence on reaction time, spore concentration, concentration of substrate and temperature were demonstrated. It was possible to block the chitinolytic activity by chitin hydrolysate. By incubation at 80 degrees C for 10 min or at 55 degrees C for 20 min the spores were loosing the chitinolytic activity. Incubation of the spores in trypsin reduced the chitinolytic activity. Cellulase activity could not be detected.  相似文献   

20.
To investigate the outermost structure of the Bacillus subtilis spore, we analyzed the accessibility of antibodies to proteins on spores of B. subtilis. Anti-green fluorescent protein (GFP) antibodies efficiently accessed GFP fused to CgeA or CotZ, which were previously assigned to the outermost layer termed the spore crust. However, anti-GFP antibodies did not bind to spores of strains expressing GFP fused to 14 outer coat, inner coat, or cortex proteins. Anti-CgeA antibodies bound to spores of wild-type and CgeA-GFP strains but not cgeA mutant spores. These results suggest that the spore crust covers the spore coat and is the externally exposed, outermost layer of the B. subtilis spore. We found that CotZ was essential for the spore crust to surround the spore but not for spore coat formation, indicating that CotZ plays a critical role in spore crust formation. In addition, we found that CotY-GFP was exposed on the surface of the spore, suggesting that CotY is an additional component of the spore crust. Moreover, the localization of CotY-GFP around the spore depended on CotZ, and CotY and CotZ depended on each other for spore assembly. Furthermore, a disruption of cotW affected the assembly of CotV-GFP, and a disruption of cotX affected the assembly of both CotV-GFP and CgeA-GFP. These results suggest that cgeA and genes in the cotVWXYZ cluster are involved in spore crust formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号