首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kijima T  Sato N  Izumi T 《Biotechnology letters》2004,26(19):1505-1509
For the purpose of developing a new chiral crown ether unit as a chiral synthon, three racemic mono azabenzo-15-crown-5-ethers, i.e. (R,S)-1-(6,7,9,10,12,13,15,16-octahydro-5,8,14,17-tetraoxa-11-aza-benzocyclopentadecen-11-yl)-propan-2-ol, (R,S)-2-(6,7,9,10,12,13,15,16-octahydro-5,8,14,17-tetraoxa-11-aza-benzocyclopentadecen-11-yl)-1-phenyl-ethanol and (R , S)-1-[2-(6,7,9,10,12,13,15,16-octahydro-5,8,14,17-tetraoxa-11-aza-benzocyclopentadecen-11-ylmethyl)-phenyl]-ethanol were esterified with vinyl acetate using a lipase from Candida antarctica. The enzymatic acylation of alcohols produced monoacylated products. Two optically active azacrown ethers, (R)-propionic acid 1-methyl-2-(6,7,9,10,12,13,15,16-octahydro-5,8,14,17-tetraoxa-11-aza-benzocyclopentadecen-11-yl)-ethyl ester and (R)-acetic acid 1-[2-(6,7,9,10,12,13,15,16-octahydro-5,8,14,17-tetraoxa-11-aza-benzocyclopentadecen-11-ylmethyl)-phenyl]-ethyl ester were obtained within 48% and 36% yields, respectively and, at an enantiometric excess of over 99% in each case.  相似文献   

2.
Phenylacetaldehyde reductase (PAR) produced by styrene-assimilating Corynebacterium strain ST-10 was used to synthesize chiral alcohols. This enzyme with a broad substrate range reduced various prochiral aromatic ketones and beta-ketoesters to yield optically active secondary alcohols with an enantiomeric purity of more than 98% enantiomeric excess (e.e.). The Escherichia coli recombinant cells which expressed the par gene could efficiently produce important pharmaceutical intermediates; (R)-2-chloro-1-(3-chlorophenyl)ethanol (28 mg.mL-1) from m-chlorophenacyl chloride, ethyl (R)-4-chloro-3-hydroxy butanoate) (28 mg.mL-1) from ethyl 4-chloro-3-oxobutanoate and (S)-N-tert-butoxycarbonyl(Boc)-3-pyrrolidinol from N-Boc-3-pyrrolidinone (51 mg.mL-1), with more than 86% yields. The high yields were due to the fact that PAR could concomitantly reproduce NADH in the presence of 3-7% (v/v) 2-propanol in the reaction mixture. This biocatalytic process provided one of the best asymmetric reductions ever reported.  相似文献   

3.
Of 25 commercial lipases, nine were able to catalyse the hydrolysis of ethyl D,L-2-amino-4-phenylbutyrate (D,L-APBAE) to optically active D-APBAE, an intermediate for the synthesis of inhibitors of angiotensin-converting enzyme, with specific selectivity ranging between 3.7 and 12.5. Optimal conditions for porcine pancrease lipase-catalyzed reaction gave a 68% conversion and the D-ester was obtained by a simple extraction with an optical purity of 98%. Saponification of the ethyl ester of D-APBA in 1 M NaOH gave the optically active D-APBA with a chemical purity greater than 99%.  相似文献   

4.
This report presents the whole-cell biotransformation of benzofuranyl-methyl ketone derivatives with the application of Polyversum antifungal agent containing Pythium oligandrum microorganism. Stereochemistry of the reduction of prochiral substrates was modified by the bioconversion conditions (concentration of reagents, a source of the carbon atom, biotransformation medium). In optimized conditions enantioselective process was noted. Secondary alcohols with excellent enantiomeric purity and high yields were obtained. The enantiomeric excess and conversion degree of 1-(benzofuran-2-yl)ethanol, 1-(7-ethylbenzofuran-2-yl)ethanol and 1-(3,7-dimethylbenzofuran-2-yl)ethanol were 99%/98.1%, 94%/94.4% and 99%/72.6%, respectively. In the presence of P. oligandrum, one of the enantiotopic hydrides of the dihydropyridine ring coenzyme is selectively transferred to a re side of the prochiral carbonyl group to give products with S configuration. This study demonstrates an inexpensive, eco-friendly approach in synthesis of optically pure benzofuran derivatives and can be an interesting alternative to organocatalysis. Furthermore, this method can be used in biotechnology processes due to its good chemical performance and a high degree of product isolation.  相似文献   

5.
Chiral secondary alcohols are convenient mediator for the synthesis of biologically active compounds and natural products. In this study fifteen yeast strains belonging to three food originated yeast species Debaryomyces hansenii, Saccharomyces cerevisiae and Hanseniaspora guilliermondii were tested for their capability for the asymmetric reduction of acetophenone to 1-phenylethanol as biocatalyst microorganisms. Of these strains, Debaryomyces hansenii P1 strain showed an effective asymmetric reduction ability. Under optimized conditions, substituted acetophenones were converted to the corresponding optically active secondary alcohols in up to 99% enantiomeric excess and at high conversion rates. This is the first report on the enantioselective reduction of acetophenone by D. hansenii P1 from past?rma, a fermented Turkish meat product. The preparative scale asymmetric bio reduction of 3-methoxy acetophenone 1g by D. hansenii P1 gave (R)-1-(3-methoxyphenyl) ethanol 2g 82% yield, and >99% enantiomeric excess. Compound 2g can be used for the synthesis of (+)-NPS-R-568 [3-(2-chlorophenyl)-N-[(1R)-1-(3-methoxyphenly) ethyl] propan-1-amine] which have a great potential for the treatment of primary and secondary hyper-parathyroidism. In addition, D. hansenii P1 successfully reduced acetophenone derivatives. This study showed that this yeast can be used industrially to produce enantiomerically pure chiral secondary alcohols, which can be easily converted to different functional groups.  相似文献   

6.
Racemic indan derivatives have been resolved by the hydrolysis of amide bonds using Corynebacterium ammoniagenes IFO12612 to produce (S)-amine and (R)-amides. In the kinetic resolution of 1 (N-12-(6-methoxy-indan-1-yl)ethyl]acetamide), it was possible to run the reaction to 44% conversion on a 10-g scale, obtaining (S)-amine 4 ((S)-2-(6-methoxy-indan-1-yl)ethylamine) at >99% enantiomeric excess (ee) and (R)-1 at 98% ee.  相似文献   

7.

The introduction of versatile functional groups, allyl and ester, at the C-1 position of the acyclic chain in acyclic adenine nucleosides was achieved for the first time directly by alkylation of adenine and N6-protected adenine. Thus, the C-1′-substituted N9-adenine acyclic nucleoside, adenine-9-yl-pent-4-enoic acid ethyl ester (11), was prepared by direct alkylation of adenine with 2-bromopent-4-enoic acid ethyl ester (6), while the corresponding N7-regioisomer, 2-[6, (dimethylaminomethyleneamino)-purin-7-yl]-pent-4-enoic acid ethyl ester (10), was obtained in one step by the coupling of N,N-dimethyl-N′- (9H-purin-6-yl)-formamidine (9) with 2-bromopent-4-enoic acid ethyl ester (6). The functional groups, ester and allyl, were converted to the desired hydroxymethyl and hydroxyethyl groups, and subsequently to phosphonomethyl derivatives and corresponding pyrophosphorylphosphonates.  相似文献   

8.
The introduction of versatile functional groups, allyl and ester, at the C-1 position of the acyclic chain in acyclic adenine nucleosides was achieved for the first time directly by alkylation of adenine and N6-potected adenine. Thus, the C-1'-substituted N9-adenine acyclic nucleoside, adenine-9-yl-pent-4-enoic acid ethyl ester (11), was prepared by direct alkylation of adenine with 2-bromopent-4-enoic acid ethyl ester (6), while the corresponding N7-regioisomer, 2-[6-(dimethylaminomethyleneamino)-purin-7-yl]-pent-4-enoic acid ethyl ester (10), was obtained in one step by the coupling of N, N-dimethyl-N'- (9H-purin-6-yl)-formamidine (9) with 2-bromopent-4-enoic acid ethyl ester (6). The functional groups, ester and allyl, were converted to the desired hydroxymethyl and hydroxyethyl groups, and subsequently to phosphonomethyl derivatives and corresponding pyrophosphorylphosphonates.  相似文献   

9.
β-methylaspartate ammonia-lyase, EC 4.3.1.2, (β-methylaspartase) from Clostridium tetanomorphum was used to produce a 40/60 molar ratio of (2S,3R) and (2S,3S)-3-methylaspartic acids, 2a and 2b , respectively, from mesaconic acid 1 as substrate, on a large scale. To prepare (3R,4R)-3-methyl-4-(benzyloxycarbonyl)-2-oxetanone (benzyl 3-methylmalolactonate) 6, 2a and 2b were transformed, in the first step, into 2-bromo-3-methylsuccinic acids 3a and 3b and separated. After three further steps, (2S,3S)- 3a yielded the α,β-substituted β-lactone (3R,4R) 6 with a very high diastereoisomeric excess (>95% by chiral gas chromatography). The corresponding crystalline polymer, poly[benzyl β-(2R,3S)-3-methylmalate] 8 , prepared by an anionic ring opening polymerization, was highly isotactic as determined by 13C NMR. Catalytic hydrogenolysis of lactone 6 yielded (3R,4R)-3-methyl-4-carboxy-2-oxetanone (3-methylmalolactonic acid) 7 , to which reactive, chiral, or bioactive molecules can be attached through ester bonds leading to polymers with possible therapeutic applications. Because of the ability of β-methylaspartase to catalyse both syn- and anti-elimination of ammonia from (2S,3RS)-3-methylaspartic acid 2ab at different rates, the (2S,3R)-stereoisomer 2a was retained and isolated for further reactions. These results permit the use of the chemoenzymatic route for the preparation of both optically active and racemic polymers of 3-methylmalic acid with well-defined enantiomeric and diastereoisomeric compositions. Chirality 10:727–733, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Esterification in an organic solvent for enantioselective preparation of optically active secondary alcohols was investigated using porcine pancreas lipase (PPL), (R,S)-2-octanol and dodecanoic acid in heptane. The influence of different reaction conditions on esterification rate and enantioselectivity was studied. Removal of water and immobilization of PPL both led to distinct improvement of the extent of ester formation and enantioselectivity of catalysis. Studies allowing continuous control of optical enrichment in the product (ester) and the remaining substrate (alcohol) were carried out in order to further optimize the reaction conditions. Optically pure (R)-and (S)-2-octanol were prepared.  相似文献   

11.
Highly enantioselective reduction of various methyl- and ethylketones bearing different functional groups, such as double and triple carbon-carbon bonds, methyl ester, cyano, ethyl ether, phenyl and chloride, employing Thermoanaerobium brockii alcohol dehydrogenase (TBADH) as a catalyst, affords the corresponding optically active, secondary alcohols. As expected on the basis of our previous studies with monofunctional ketones, reduction of most of the substrates yields, uniformly, alcohols with an S configuration, arising from highly selective hydride attack at the re face of the carbonyl. However, with the smaller-sized ketones, there is a clear reversal in stereoselectivity. The synthetic usefulness of these chiral building blocks has been demonstrated by the total synthesis of (S)-(+)-Z-tetradec-5-en-13-olide, one of several synergistic aggregation pheromones produced by male flat grain beetles, Cryptolestes pusillus (Schonherr). The pheromone was prepared from (S)-(+)-methyl-8-hydroxynonanoate with optical purity greater than 99% in a six-step synthesis.  相似文献   

12.
The biologically active conformation of N-(6-phenylhexanoyl)glycyl-tryptophan amide (GB-115), a highly active cholecystokinin-4 retro dipeptide analogue with the anxiolytic activity, has been studied using the conformational analysis by 1H NMR spectroscopy in solution and the method of sterically restricted analogues. A study of the relationship between the preferable conformation in solution and the anxiolytic activity in the series of GB-115 derivatives showed that the biologically active conformation of this compound is the β-turn. Based on the data on the nuclear Overhauser effect 1H NMR spectroscopy, this structure was identified as the β-turn of type II. Subsequent synthesis and study of the pharmacological activity of novel sterically restricted analogues of dipeptide GB-115: (2S)-2-{(3R)-3-[(6-phenylhexanoyl)amino]-2-oxopyrrolidine-1-yl}-3-(1H-indole-3-yl)propionic acid ethyl ester, N-(6-phenylhexanoyl)glycyl-N α-methyltryptophan ethyl ester, (2S)-2-[(10,11-dihydro-5H-dibenzo[b, f]azepin-5-ylcarbonyl)amino]-3-(1H-indole-3-yl)propionic acid methyl ester, and (2S)-2-[({3-[(ethoxycarbonyl)amino]-10,11-dihydro-5H-dibenzo[b, f]azepin-5-yl}carbonyl)amino]-3-(1H-indole-3-yl)propionic acid methyl ester confirmed that the β-turn of type II is the active conformation of GB-115.  相似文献   

13.
Highly enantioselective reduction of various methyl- and ethylketones bearing different functional groups, such as double and triple carbon-carbon bonds, methyl ester, cyano, ethyl ether, phenyl and chloride, employing Thermoanaerobium brockii alcohol dehydrogenase (TBADH) as a catalyst, affords the corresponding optically active, secondary alcohols. As expected on the basis of our previous studies with monofunctional ketones, reduction of most of the substrates yields, uniformly, alcohols with an S configuration, arising from highly selective hydride attack at the re face of the carbonyl. However, with the smaller-sized ketones, there is a clear reversal in stereoselectivity. The synthetic usefulness of these chiral building blocks has been demonstrated by the total synthesis of (S)-(+)-Z-tetradec-5-en-13-olide, one of several synergistic aggregation pheromones produced by male flat grain beetles, Cryptolestes pusillus (Schonherr). The pheromone was prepared from (S)-(+)-methyl-8-hydroxynonanoate with optical purity greater than 99% in a six-step synthesis.  相似文献   

14.
Reaction of DL-1,3-dimethylthymine epoxide (1) with aniline gave (2A) and (3A). Isomerization of (2A) provided (3A), (4) and (5). Reaction of (1) with L-amino acid ethyl ester afforded four optically active diastereomers.  相似文献   

15.
A new bacterial strain, E105, has been introduced as a biocatalyst for the enantioselective hydrolysis of ethyl (R,S)-2-(2-oxopyrrolidin-1-yl) butyrate, (R,S)-1, to (S)-2-(2-oxopyrrolidin-1-yl) butyric acid, (S)-2. This strain was isolated from 60 soil samples using (R,S)-1 as the sole carbon source. The isolate was identified as Tsukamurella tyrosinosolvens E105, based on its morphological characteristics, physiological tests, and 16S rDNA sequence analysis. The process of cell growth and hydrolase production for this strain was then investigated. The hydrolase activity reached its maximum after cultivation at 200?rpm and 30?°C for 36?h. Furthermore, the performance of the enantioselective hydrolysis of (R,S)-1 was studied. The optimal reaction temperature, initial pH, substrate concentration, and concentration of suspended cells were 30?°C, 6.8, 10 and 30?g/l (DCW), respectively. Under these conditions, a high conversion (>45?%) of the product (S)-2 with an excellent enantiomeric excess (ee) (>99?%), and a satisfied enantiomeric ratio (E) (>600) as well were obtained. This study showed that the bacterial isolate T. tyrosinosolvens E105 displayed a high enantioselectivity towards the hydrolysis of racemic ethyl 2-(2-oxopyrrolidin-1-yl) butyrate.  相似文献   

16.
Efficient enzyme catalyzed kinetic resolutions of a synthetically useful chiral building block, (Z)-4-triphenylmethoxy-2,3-epoxybutan-1-ol, are reported. The highest selectivities were achieved by Lipozyme TL IM and Amano Lipase PS enzymes in the presence of vinyl acetate. Enantiomeric enrichment of the optically active acetate isomer was accomplished by selective crystallization of the racemic part of the enantiomeric mixture. Enzyme catalyzed hydrolysis of the acetate also provided an optically pure epoxybutanol derivative. O-Benzylation of (+)-(Z)-1-hydroxy-4-triphenylmethoxy-2,3-epoxybutane followed by super base promoted diastereo- and enantio-selective rearrangement resulted in (+)-(2R,3R,1'R)-3-[1-hydroxy-2-(triphenylmethoxy)ethyl]-2-phenyloxetane in >98% ee and de. Configurations of the new optically active products were determined by chemical correlation.  相似文献   

17.
李群  谭韵雅  王平  魏琴  钱双  石丹 《广西植物》2014,(4):520-524
为进一步明确大叶桉的化学成分,对大叶桉叶水浸提液分别用不同极性的有机溶剂石油醚、乙酸乙酯和正丁醇进行萃取,对各萃取相进行GC-MS分析。结果表明:大叶桉叶水浸提液共含有37种化合物,其中,石油醚萃取相中含有20种,主成分为草酸丁基异己酯(37.24%);乙酸乙酯萃取相中含有16种,主成分为2,2-二亚甲基双[6-(1,1-二甲基乙基-4-甲基)]-苯酚(50.05%);正丁醇萃取相中含有5种,主成分为丙基-2-甲基丁酸酯(54.57%)。在所有成分中,酯类物质居多,也有少量的烯、酮、醇、苯和烷烃。1-甲基,4-(1-甲基乙基)-1,4环己二烯、2,2-二亚甲基[6-(1,1-二甲基乙基)-4-甲基]苯酚、1-十八烯和二十烷为石油醚和乙酸乙酯的共有成分;1、2-苯二甲酸单(2-乙基己基)酯为乙酸乙酯和正丁醇的共有成分。该研究进一步明确了大叶桉的化学成分,为其在医药、化工和化感方面的应用研究奠定了基础。  相似文献   

18.
The solvent-free esterification reaction of a commercial oleic acid and ethanol was selected as the test reaction for Candida rugosa lipase immobilized on polypropylene (PP) at 318 K (initial molar ratio 1:1). Adding of water from 0 to 30 wt. % (in gram per gram of fatty acid x 100) and the pretreatment of Candida rugosa lipase with polyethylenglycol (PEG), octane, and acetone increases the conversion to ethyl esters. The role of hydrophobic interactions of the lipase with PP and PEG was studied using molecular mechanics (MM2) for calculation of steric energies and the parametrized model (PM3) for calculation of enthalpy changes upon interaction. The nonpolar lateral groups of amino acids interact strongly with PP, whereas polar groups interact more strongly with PEG. Both interactions stabilize the open, active conformation of the lipase from Candida rugosa. Activities ranged from 5 x 10(-5) to 2.0 x 10(-4) mol ethyl oleate/h/mg enzyme, depending on reaction conditions. Steric energy changes vary between +30 and -10 kcal/mol, whereas the enthalpy changes ranged from +10 to -10 kcal/mol.  相似文献   

19.
Crystallographic analysis of ligands bound to HDM2 suggested that 7-substituted 1,4-diazepine-2,5-diones could mimic the alpha-helix of p53 peptide and may represent a promising scaffold to develop HDM2-p53 antagonists. To verify this hypothesis, we synthesized and biologically evaluated 5-[(3S)-3-(4-chlorophenyl)-4-[(R)-1-(4-chlorophenyl)ethyl]-2,5-dioxo-7-phenyl-1,4-diazepin-1-yl]valeric acid (10) and 5-[(3S)-7-(2-bromophenyl)-3-(4-chlorophenyl)-4-[(R)-1-(4-chlorophenyl)ethyl]-2,5-dioxo-1,4-diazepin-1-yl]valeric acid (11). Preliminary in vitro testing shows that 10 and 11 substantially antagonize the binding between HDM2 and p53 with an IC(50) of 13 and 3.6 microM, respectively, validating the modeling predictions. Taken together with the high cell permeability of diazepine 11 determined in CACO-2 cells, these results suggest that 1,4-diazepine-2,5-diones may be useful in the treatment of certain cancers.  相似文献   

20.
Summary Pig liver esterase (EC 3.1.1.1) catalyzed hydrolysis of the dimetrhy ester of meso-cis-1,2-cyclohexanedicarboxylic acid yielded the optically pure (1S,2R)-monoester. The corresponding diethyl ester yielded racemic monoester.The diethyl ester of racemic trans-1,2-cyclohexanedicarboxylic acid was kinetically resolved by partial hydrolysis with subtilisin (EC 3.4.21.14) or pig liver esterase. The (1R,2R)-monoester had an enantiomeric excess of 45% and was obtained in an enantiomerically pure form through recrystallisation. The remaining (1S,2S)-diester exhibited an enantiomeric excess of 83%. The nature of the ester function (methyl, ethyl, and propyl esters) had a great influence on the enantiomeric excess obtained and on the kinetic parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号