首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Giardia duodenalis cysteine proteases have been identified as key virulence factors and have been implicated in alterations to intestinal goblet cell activity and mucus production during Giardia infection. The present findings demonstrate a novel mechanism by which Giardia cysteine proteases modulate goblet cell activity via cleavage and activation of protease-activated receptor 2. Giardia duodenalis (assemblage A) increased MUC2 mucin gene expression in human colonic epithelial cells in a manner dependent upon both protease-activated receptor 2 activation and Giardia cysteine protease activity. Protease-activated receptor 2 cleavage within the N-terminal activation domain by Giardia proteases was confirmed using a nano-luciferase tagged recombinant protease-activated receptor 2. In keeping with these observations, the synthetic protease-activated receptor 2-activating peptide 2fLIGRLO-amide increased Muc2 gene expression in a time-dependent manner. Calcium chelation and inhibition of the ERK1/2 mitogen activated protein kinase pathway inhibited Muc2 upregulation during Giardia infection, consistent with canonical protease-activated receptor 2 signaling pathways. Giardia cysteine proteases cleaved both recombinant protease-activated receptor 1 and protease-activated receptor 2 within their extracellular activation domains with isolate-dependent efficiency that correlated with the production of cysteine protease activity. Protease-activated receptors represent a novel target for Giardia cysteine proteases, and these findings demonstrate that protease-activated receptor 2 can regulate mucin gene expression in intestinal goblet cells.  相似文献   

2.
Blastocystis is one of the most common gut parasites found in the intestinal tract of humans and animals. Its'' association with IBS is controversial, possibly as a result of irregular shedding of parasites in stool and variation in stool detection. We aimed to screen for Blastocystis in colonic stool aspirate samples in adult patients with and without IBS undergoing colonoscopy for various indications and measure the interleukin levels (IL-8, IL-3 and IL-5). In addition to standard stool culture techniques, polymerase chain reaction (PCR) techniques were employed to detect and subtype Blastocystis. All the serum samples collected were subjected for ELISA studies to measure the interleukin levels (IL-8, IL-3 and IL-5). Among 109 (IBS n = 35 and non-IBS n = 74) adults, direct stool examination and culture of colonic aspirates were initially negative for Blastocystis. However, PCR analysis detected Blastocystis in 6 (17%) IBS and 4 (5.5%) non-IBS patients. In the six positive IBS patients by PCR method, subtype 3 was shown to be the most predominant (3/6: 50%) followed by subtype 4 (2/6; 33.3%) and subtype 5 (1/6; 16.6%). IL-8 levels were significantly elevated in the IBS Blasto group and IBS group (p<0.05) compared to non-IBS and non-IBS Blasto group. The level of IL-3 in were seen to be significantly higher in than IBS Blasto group and IBS group (p<0.05) compared to non-IBS. Meanwhile, the IL-5 levels were significantly higher in IBS Blasto group (p<0.05) compared to non-IBS and non-IBS Blasto group. This study implicates that detecting Blastosystis by PCR method using colonic aspirate samples during colonoscopy, suggests that this may be a better method for sample collection due to the parasite’s irregular shedding in Blastocystis-infected stools. Patients with IBS infected with parasite showed an increase in the interleukin levels demonstrate that Blastocystis does have an effect in the immune system.  相似文献   

3.
Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates) trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate) trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1), suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK). Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.  相似文献   

4.
Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3+ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3+ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6 mice.  相似文献   

5.
Blastocystis is an extracellular, enteric pathogen that induces intestinal disorders in a range of hosts including humans. Recent studies have identified potential parasite virulence factors in and host responses to this parasite; however, little is known about Blastocystis-host attachment, which is crucial for colonization and virulence of luminal stages. By utilizing 7 different strains of the parasite belonging to two clinically relevant subtypes ST-4 and ST-7, we investigated Blastocystis-enterocyte adhesion and its association with parasite-induced epithelial barrier disruption. We also suggest that drug resistance in ST-7 strains might result in fitness cost that manifested as impairment of parasite adhesion and, consequently, virulence. ST-7 parasites were generally highly adhesive to Caco-2 cells and preferred binding to intercellular junctions. These strains also induced disruption of ZO-1 and occludin tight junction proteins as well as increased dextran-FITC flux across epithelial monolayers. Interestingly, their adhesion was correlated with metronidazole (Mz) susceptibility. Mz resistant (Mzr) strains were found to be less pathogenic, owing to compromised adhesion. Moreover, tolerance of nitrosative stress was also reduced in the Mzr strains. In conclusion, the findings indicate that Blastocystis attaches to intestinal epithelium and leads to epithelial barrier dysfunction and that drug resistance might entail a fitness cost in parasite virulence by limiting entero-adhesiveness. This is the first study of the cellular basis for strain-to-strain variation in parasite pathogenicity. Intra- and inter-subtype variability in cytopathogenicity provides a possible explanation for the diverse clinical outcomes of Blastocystis infections.  相似文献   

6.
Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs) are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn’s disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time that certain Giardia infections may attenuate PMN accumulation by decreasing the expression of the mediators responsible for their recruitment.  相似文献   

7.
Parasitic helminths are sensed by the immune system via tissue-derived alarmins that promote the initiation of the appropriate type 2 immune responses. Here we establish the nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite burdens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and increased mast cell activation. Using gene-deficient mice, we show that application of IL-33 triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, independent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-driven intestinal anti-helminth immunity.  相似文献   

8.

Aims

Intestinal alkaline phosphatase (IAP) is an intestinal brush border enzyme that is shown to function as a gut mucosal defense factor, but its defensive mechanism remains unclear. The aims of this study were to evaluate the effect of IAP on intestinal epithelial cells and macrophages, and on chronic colitis in interleukin-10-deficient (IL-10−/−) mice.

Main methods

Human intestinal epithelial cells COLO 205 and peritoneal macrophages from IL-10−/− mice were pretreated with IAP and then stimulated with lipopolysaccharide (LPS). IL-8 secretion from COLO205 cells and TNF-α, IL-6, IL-12 from peritoneal macrophages were measured by ELISA. Electrophoretic mobility shift assay was used to assess the DNA binding activity of NF-κB and IκBα phosphorylation/degradation was evaluated by immunoblot assay in COLO 205. For the in vivo study, colitis was induced in IL-10−/− mice with piroxicam, the mice were then treated with 100 or 300 units of IAP by oral gavage for 2 weeks. Colitis was quantified by histopathologic scoring, and the phosphorylation of IκBα in the colonic mucosa was assessed using immunohistochemistry.

Key findings

IAP significantly inhibited LPS-induced inflammatory cytokine production in both IECs and peritoneal macrophages. IAP also attenuated LPS-induced NF-κB binding activity and IκBα phosphorylation/degradation in IECs. Oral administration of IAP significantly reduced the severity of colitis and down-regulated colitis-induced IκBα phosphorylation in IL-10−/− mice.

Significance

IAP may inhibit the activation of intestinal epithelial cells and peritoneal macrophages, and may attenuate chronic murine colitis. This finding suggests that IAP supplementation is a potential therapeutic option for inflammatory bowel disease.  相似文献   

9.
10.
11.
12.
Blastocystis is an ubiquitous, enteric protozoan of humans and many other species. Human infection has been associated with gastrointestinal disease such as irritable bowel syndrome, however, this remains unproven. A relevant animal model is needed to investigate the pathogenesis/pathogenicity of Blastocystis. We concluded previously that pigs are likely natural hosts of Blastocystis with a potentially zoonotic, host-adapted subtype (ST), ST5, and may make suitable animal models. In this study, we aimed to characterise the host-agent interaction of Blastocystis and the pig, including localising Blastocystis in porcine intestine using microscopy, PCR and histopathological examination of tissues. Intestines from pigs in three different management systems, i.e., a commercial piggery, a small family farm and a research herd (where the animals were immunosuppressed) were examined. This design was used to determine if environment or immune status influences intestinal colonisation of Blastocystis as immunocompromised individuals may potentially be more susceptible to blastocystosis and development of associated clinical signs. Intestines from all 28 pigs were positive for Blastocystis with all pigs harbouring ST5. In addition, the farm pigs had mixed infections with STs 1 and/or 3. Blastocystis organisms/DNA were predominantly found in the large intestine but were also detected in the small intestine of the immunosuppressed and some of the farm pigs, suggesting that immunosuppression and/or husbandry factors may influence Blastocystis colonisation of the small intestine. No obvious pathology was observed in the histological sections. Blastocystis was present as vacuolar/granular forms and these were found within luminal material or in close proximity to epithelial cells, with no evidence of attachment or invasion. These results concur with most human studies, in which Blastocystis is predominantly found in the large intestine in the absence of significant organic pathology. Our findings also support the use of pigs as animal models and may have implications for blastocystosis diagnosis/treatment.  相似文献   

13.
Blastocystis is a common intestinal protozoan parasite of humans and a variety of animal species. To date, the prevalence of Blastocystis and major subtypes distribution in the domestic animals inhabiting in the Qinghai-Tibetan Plateau Area (QTPA) of China is yet poorly studied. In this study, we investigated the distribution and genetic diversity of Blastocystis in seven animal species in QTPA in China. Four hundred and five fresh fecal samples were collected from domestic animals in Qinghai, Yunnan, and Tibet of China and analyzed using nested PCR and SSU rRNA gene sequencing. It was found that the overall prevalence of Blastocystis infection was 40.2% (163/405) in the animals studied. The most predominant subtype of Blastocystis was ST10 (57.7%) followed by ST14 (28.8%) and ST2 (13.5%). These results reveal the epidemiological features of Blastocytis infection in animals in the high altitude plateau area. The finding of presence of ST2 in a number of animal species suggests a zoonotic nature of Blastocystis and might be of importance of public health.  相似文献   

14.
Blastocystis is a protistan parasite living in the digestive tract of many animals, including humans. This highly prevalent intestinal parasite is suspected to be linked to Irritable Bowel Syndrome (IBS), a chronic functional bowel disorder. Here, we first compared the prevalence of Blastocystis among 56 IBS patients (40 IBS with constipation (IBS-C), 9 IBS with diarrhea (IBS-D), 4 mixed IBS (IBS-M) and 3 unsubtyped IBS (IBS-U) according to the Rome III criteria) and 56 control (i.e. without any diagnosed chronic or acute gastrointestinal disorder) subjects. The highest prevalence of Blastocystis spp. was observed in the IBS group, but was only statistically significant in men (36.8% in the IBS group versus 4.8% in the control group). We then conducted a meta-analysis including epidemiological studies attempting to determine whether Blastocystis carriage could be linked to IBS, and highlighted that IBS patients had a relative risk of 2.34 to be infected by Blastocystis when compared to non-IBS subjects. We also looked for Dientamoeba fragilis, which is often associated with IBS, and identified this parasite only in some IBS patients (n = 6/56). Several studies provided evidence for a major role of the gut microbiota in the pathophysiology of IBS. Thus, we investigated the possible impact of Blastocystis carriage on the enteric bacterial community through quantification of 8 major bacterial groups from the enteric flora. Our data indicated that men with IBS-C had a significant decrease in Bifidobacterium sp. when infected by Blastocystis. Interestingly, in control subjects (i.e. without any gastrointestinal disorder) positive for Blastocystis, Faecalibacterium prausnitzii, which is known for its anti-inflammatory properties, was significantly decreased in men. Our results support the hypothesis that Blastocystis might be linked to the pathophysiology of IBS-C and intestinal flora imbalance.  相似文献   

15.
16.
Mirza H  Wu Z  Teo JD  Tan KS 《Cellular microbiology》2012,14(9):1474-1484
Blastocystis is an enteric parasite that causes acute and chronic intestinal infections, often non-responsive to conventional antibiotics. The effects of Blastocystis infections on human epithelial permeability are not known, and molecular mechanisms of Blastocystis-induced intestinal pathology remain unclear. This study was conducted to determine whether Blastocystis species alters human intestinal epithelial permeability, to assess whether these abnormalities are rho kinase (ROCK)-dependent, and to investigate the therapeutic potential of the HMG-CoA reductase inhibitor Simvastatin in altered intestinal epithelial barrier function. The effect of metronidazole resistant (Mz(r) ) Blastocystis isolated from a symptomatic patient on human colonic epithelial monolayers (Caco-2) was assessed. Modulation of enterocyte myosin light chain phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, transepithelial resistance, cytoskeletal F-actin and tight junctional zonula occludens-1 (ZO-1) by parasite cysteine proteases were measured in the presence or absence of HMG-CoA reductase and ROCK inhibition. Blastocystis significantly decreased transepithelial resistance, increased epithelial permeability, phosphorylated myosin light chain and reorganized epithelial actin cytoskeleton andZO-1. Thesealterations were abolished byinhibition of enterocyte ROCK, HMG-CoA reductase and parasite cysteine protease. Our findings suggest that cysteine proteases of Mz(r) Blastocystis induce ROCK-dependent disruption of intestinal epithelial barrier function and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1. Simvastatin prevented parasite-induced barriercompromise, suggesting a therapeutic potential of statins in intestinal infections.  相似文献   

17.
In recent years, the human gut microbiome has been recognised to play a pivotal role in the health of the host. Intestinal homeostasis relies on this intricate and complex relationship between the gut microbiota and the human host. While much effort and attention has been placed on the characterization of the organisms that inhabit the gut microbiome, the complex molecular cross-talk between the microbiota could also exert an effect on gastrointestinal conditions. Blastocystis is a single-cell eukaryotic parasite of emerging interest, as its beneficial or pathogenic role in the microbiota has been a subject of contention even to-date. In this study, we assessed the function of the Blastocystis tryptophanase gene (BhTnaA), which was acquired by horizontal gene transfer and likely to be of bacterial origin within Blastocystis. Bioinformatic analysis and phylogenetic reconstruction revealed distinct divergence of BhTnaA versus known bacterial homologs. Despite sharing high homology with the E. coli tryptophanase gene, we show that Blastocystis does not readily convert tryptophan into indole. Instead, BhTnaA preferentially catalyzes the conversion of indole to tryptophan. We also show a direct link between E. coli and Blastocystis tryptophan metabolism: In the presence of E. coli, Blastocystis ST7 is less able to metabolise indole to tryptophan. This study examines the potential for functional variation in horizontally-acquired genes relative to their canonical counterparts, and identifies Blastocystis as a possible producer of tryptophan within the gut.  相似文献   

18.
The human gut microbiota is a diverse and complex ecosystem that is involved in beneficial physiological functions as well as disease pathogenesis. Blastocystis is a common protistan parasite and is increasingly recognized as an important component of the gut microbiota. The correlations between Blastocystis and other communities of intestinal microbiota have been investigated, and, to a lesser extent, the role of this parasite in maintaining the host immunological homeostasis. Despite recent studies suggesting that Blastocystis decreases the abundance of beneficial bacteria, most reports indicate that Blastocystis is a common component of the healthy gut microbiome. This review covers recent finding on the potential interactions between Blastocystis and the gut microbiota communities and its roles in regulating host immune responses.  相似文献   

19.
The ability of bifidobacteria to adhere to the intestine of the human host is considered to be important for efficient colonization and achieving probiotic effects. Bifidobacterium bifidum strains DSM20456 and MIMBb75 adhere well to the human intestinal cell lines Caco-2 and HT-29. The surface lipoprotein BopA was previously described to be involved in mediating adherence of B. bifidum to epithelial cells, but thioacylated, purified BopA inhibited the adhesion of B. bifidum to epithelial cells in competitive adhesion assays only at very high concentrations, indicating an unspecific effect. In this study, the role of BopA in the adhesion of B. bifidum was readdressed. The gene encoding BopA was cloned and expressed without its lipobox and hydrophobic signal peptide in Escherichia coli, and an antiserum against the recombinant BopA was produced. The antiserum was used to demonstrate the abundant localization of BopA on the cell surface of B. bifidum. However, blocking of B. bifidum BopA with specific antiserum did not reduce adhesion of bacteria to epithelial cell lines, arguing that BopA is not an adhesin. Also, adhesion of B. bifidum to human colonic mucin and fibronectin was found to be BopA independent. The recombinant BopA bound only moderately to human epithelial cells and colonic mucus, and it failed to bind to fibronectin. Thus, our results contrast the earlier findings on the major role of BopA in adhesion, indicating that the strong adhesion of B. bifidum to epithelial cell lines is BopA independent.  相似文献   

20.
Vibrio cholerae, the etiological agent of cholera, colonizes the small intestine, produces an enterotoxin and causes acute inflammatory response at intestinal epithelial cell surface. Pretreatment of intestinal epithelial cells with quercetin reduces the level of V. cholerae induced IL-8 in dose and time dependent manner as determined by ELISA and RT-PCR. Immunofluorescence studies showed that quercetin suppresses the translocation of p50 subunit of NF-κB. In vivo, quercetin administration produced a significant reduction of neutrophil infiltration in the intestinal epithelial layer of suckling mouse. Taken together, quercetin could inhibit the V. cholerae induced inflammation and may therefore find use in management of V. cholerae induced pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号