首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

2.
Kang TS  Radić Z  Talley TT  Jois SD  Taylor P  Kini RM 《Biochemistry》2007,46(11):3338-3355
Alpha-conotoxins isolated from Conus venoms contain 11-19 residues and preferentially fold into the globular conformation that possesses a specific disulfide pairing pattern (C1-3, C2-4). We and others isolated a new family of chi-conotoxins (also called lambda conotoxins) with the conserved cysteine framework of alpha-conotoxins but with alternative disulfide pairing (C1-4, C2-3) resulting in the ribbon conformation. In both families, disulfide pairing and hence folding are important for their biological potency. By comparing the structural differences, we identified potential structural determinants responsible for the folding tendencies of these conotoxins. We examined the role of conserved proline in the first intercysteine loop and the conserved C-terminal amide on folding patterns of synthetic analogues of ImI conotoxin by comparing the isoforms with the regiospecifically synthesized conformers. Deamidation at the C-terminus and substitution of proline in the first intercysteine loop switch the folding pattern from the globular form of alpha-conotoxins to the ribbon form of chi/lambda-conotoxins. The findings are corroborated by reciprocal folding of CMrVIA chi/lambda-conotoxins. Substitution of Lys-6 from the first intercysteine loop of CMrVIA conotoxin with proline, as well as the inclusion of an amidated C-terminal shifted the folding preference of CMrVIA conotoxin from its native ribbon conformation toward the globular conformation. Binding assays of ImI conotoxin analogues with Aplysia and Bulinus acetylcholine binding protein indicate that both these substitutions and their consequent conformational change substantially impact the binding affinity of ImI conotoxin. These results strongly indicate that the first intercysteine loop proline and C-terminal amidation act as conformational switches in alpha- and chi/lambda-conotoxins.  相似文献   

3.
Beld J  Woycechowsky KJ  Hilvert D 《Biochemistry》2007,46(18):5382-5390
Diselenide bonds are intrinsically more stable than disulfide bonds. To examine how this stability difference affects reactivity, we synthesized selenoglutathione (GSeSeG), an analogue of the oxidized form of the tripeptide glutathione that contains a diselenide bond in place of the natural disulfide. The reduction potential of this diselenide bond was determined to be -407 +/- 9 mV, a value which is 151 mV lower than that of the disulfide bond in glutathione (GSSG). Thus, the diselenide bond of GSeSeG is 7 kcal/mol more stable than the disulfide bond of GSSG. Nonetheless, we found that GSeSeG can be used to oxidize cysteine residues in unfolded proteins, a process that is driven by the gain in protein conformational stability upon folding. Indeed, the folding of both ribonuclease A (RNase A) and bovine pancreatic trypsin inhibitor (BPTI) proceeded efficiently using GSeSeG as an oxidant, in the former case with a 2-fold rate increase relative to GSSG and in the latter case accelerating conversion of a stable folding intermediate to the native state. In addition, GSeSeG can also oxidize the common biological cofactor NADPH and is a good substrate for the NADPH-dependent enzyme glutathione reductase (kcat = 69 +/- 2 s-1, Km = 54 +/- 7 microM), suggesting that diselenides can efficiently interact with the cellular redox machinery. Surprisingly, the greater thermodynamic stability of diselenide bonds relative to disulfide bonds is not matched by a corresponding decrease in reactivity.  相似文献   

4.
Therapeutic proteins require correct disulfide bond formation for biological activity and stability. This makes their manufacturing and storage inherently challenging since disulfide bonds can be aberrantly formed and/or undergo significant structural changes. In this paper the mechanisms of disulfide bond formation and scrambling are reviewed, with a focus on their impact on the biological activity and storage stability of recombinant proteins. After assessing the research progress in detecting disulfide bond scrambling, strategies for preventing this phenomenon are proposed.  相似文献   

5.
Conformations of disulfide and diselenide were compared in (Boc‐Cys/Sec‐NHMe)2 and (Boc‐Cys/Sec‐OMe)2 using X‐ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, density functional theory (DFT), and circular dichroism (CD) spectroscopy. Conformations of disulfide/diselenide in polypeptides are defined based on the sign of side chain torsion angle χ3 (–CH2–S/Se–S/Se–CH2–); negative indicates left‐handed and positive indicates right‐handed orientation. In the crystals of (Boc‐Cys‐OMe)2 and (Boc‐Sec‐OMe)2, the disulfide exhibits a left‐handed and the diselenide a right‐handed orientation. Characterization of cystine and selenocystine derivatives in solution using 1H‐NMR, natural abundant 77Se NMR, 2D‐ROESY, and chemical shift analysis coupled to DMSO titration has indicated the symmetrical nature and antiparallel orientation of Cys/Sec residues about the disulfide/diselenide bridges. Structural calculations of cystine and selenocystine derivatives using DFT further support the antiparallel orientation of Cys/Sec residues about disulfide/diselenide. The far‐ultraviolet (UV) region CD spectra of cystine and selenocystine derivatives have exhibited the negative Cotton effect (CE) for disulfide and positive for diselenide confirming the difference in the conformational preference of disulfide and diselenide. In the previously reported polymorphic structure of (Boc‐Sec‐OMe)2, the diselenide has right‐handed orientation. In the X‐ray structures of disulfide and diselenide analogues of Escherichia coli protein encoded by curli specific gene C (CgsC) retrieved from Protein Databank (PDB), disulfide has left‐handed and the diselenide right‐handed orientation. The current report provides the evidence for the local conformational difference between a disulfide and a diselenide group under unconstrained conditions, which may be useful for the rational replacement of disulfide by diselenide in polypeptide chains.  相似文献   

6.
The complement C3a anaphylatoxin is a major molecular mediator of innate immunity. It is a potent activator of mast cells, basophils and eosinophils and causes smooth muscle contraction. Structurally, C3a is a relatively small protein (77 amino acids) comprising a N-terminal domain connected by 3 native disulfide bonds and a helical C-terminal segment. The structural stability of C3a has been investigated here using three different methods: Disulfide scrambling; Differential CD spectroscopy; and Reductive unfolding. Two uncommon features regarding the stability of C3a and the structure of denatured C3a have been observed in this study. (a) There is an unusual disconnection between the conformational stability of C3a and the covalent stability of its three native disulfide bonds that is not seen with other disulfide proteins. As measured by both methods of disulfide scrambling and differential CD spectroscopy, the native C3a exhibits a global conformational stability that is comparable to numerous proteins with similar size and disulfide content, all with mid-point denaturation of [GdmCl]1/2 at 3.4-5 M. These proteins include hirudin, tick anticoagulant protein and leech carboxypeptidase inhibitor. However, the native disulfide bonds of C3a is 150-1000 fold less stable than those proteins as evaluated by the method of reductive unfolding. The 3 native disulfide bonds of C3a can be collectively and quantitatively reduced with as low as 1 mM of dithiothreitol within 5 min. The fragility of the native disulfide bonds of C3a has not yet been observed with other native disulfide proteins. (b) Using the method of disulfide scrambling, denatured C3a was shown to consist of diverse isomers adopting varied extent of unfolding. Among them, the most extensively unfolded isomer of denatured C3a is found to assume beads-form disulfide pattern, comprising Cys36-Cys49 and two disulfide bonds formed by two pair of consecutive cysteines, Cys22-Cys23 and Cys56-Cys57, a unique disulfide structure of polypeptide that has not been documented previously.  相似文献   

7.
We have determined a high-resolution three-dimensional structure of alpha-conotoxin BuIA, a 13-residue peptide toxin isolated from Conus bullatus. Despite its unusual 4/4 disulfide bond layout alpha-conotoxin BuIA exhibits strong antagonistic activity at alpha6/alpha3beta2beta3, alpha3beta2, and alpha3beta4 nAChR subtypes like some alpha4/7 conotoxins. alpha-Conotoxin BuIA lacks the C-terminal beta-turn present within the second disulfide loop of alpha4/7 conotoxins, having only a "pseudo omega-shaped" molecular topology. Nevertheless, it contains a functionally critical two-turn helix motif, a feature ubiquitously found in alpha4/7 conotoxins. Such an aspect seems mainly responsible for similarities in the receptor recognition profile of alpha-conotoxin BuIA to alpha4/7 conotoxins. Structural comparison of alpha-conotoxin BuIA with alpha4/7 conotoxins and alpha4/3 conotoxin ImI suggests that presence of the second helical turn portion of the two-turn helix motif in alpha4/7 and alpha4/4 conotoxins may be important for binding to the alpha3 and/or alpha6 subunit of nAChR.  相似文献   

8.
Disulfide bonds play diverse structural and functional roles in proteins. In tear lipocalin (TL), the conserved sole disulfide bond regulates stability and ligand binding. Probing protein structure often involves thiol selective labeling for which removal of the disulfide bonds may be necessary. Loss of the disulfide bond may destabilize the protein so strategies to retain the native state are needed. Several approaches were tested to regain the native conformational state in the disulfide-less protein. These included the addition of trimethylamine N-oxide (TMAO) and the substitution of the Cys residues of disulfide bond with residues that can either form a potential salt bridge or others that can create a hydrophobic interaction. TMAO stabilized the protein relaxed by removal of the disulfide bond. In the disulfide-less mutants of TL, 1.0 M TMAO increased the free energy change (ΔG0) significantly from 2.1 to 3.8 kcal/mol. Moderate recovery was observed for the ligand binding tested with NBD-cholesterol. Because the disulfide bond of TL is solvent exposed, the substitution of the disulfide bond with a potential salt bridge or hydrophobic interaction did not stabilize the protein. This approach should work for buried disulfide bonds. However, for proteins with solvent exposed disulfide bonds, the use of TMAO may be an excellent strategy to restore the native conformational states in disulfide-less analogs of the proteins.  相似文献   

9.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

10.
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) are a cause of a familial form of amyotrophic lateral sclerosis. Wild-type SOD1 forms a highly conserved intra-molecular disulfide bond, whereas pathological SOD1 proteins are cross-linked via intermolecular disulfide bonds and form insoluble oligomers. A thiol-disulfide status in SOD1 will thus play a regulatory role in determining its folding/misfolding pathways; however, it remains unknown how pathogenic mutations in SOD1 affect the thiol-disulfide status to facilitate the protein misfolding. Here, we show that the structural destabilization of SOD1 scrambles a disulfide bond among four Cys residues in an SOD1 molecule. The disulfide scrambling produces SOD1 monomers with distinct electrophoretic mobility and also reproduces the formation of disulfide-linked oligomers. We have also found that the familial form of amyotrophic lateral sclerosis-causing mutations facilitate the disulfide scrambling in SOD1. Based upon our results, therefore, scrambling of the conserved disulfide bond will be a key event to cause the pathological changes in disease-associated mutant SOD1 proteins.  相似文献   

11.
Chang J  Bulychev A  Li L 《FEBS letters》2000,487(2):298-300
A predominant conformational isomer of non-native alpha-lactalbumin (alpha-LA) has been purified by thermal denaturation of the native alpha-LA using the technique of disulfide scrambling. This unique isomer retains a substantial content of alpha-helical structure. It is stabilized by two native disulfide bonds within the alpha-helical domain and two scrambled non-native disulfide bonds at the beta-sheet domain. This denatured isomer of alpha-LA exhibits structural characteristics that are consistent with the well-documented molten globule state. The ability to prepare a stabilized and structurally defined molten globule provides a useful model for studying the folding and unfolding pathways of proteins.  相似文献   

12.
SDS-PAGE under non-reducing conditions is one of the most commonly used techniques for recombinant monoclonal antibody purity and stability indicating assay. On non-reducing SDS-PAGE, bands with a lower molecular weight than the intact antibody are routinely observed and is a common feature of IgG molecules. These fragments were analyzed by in-gel digestion followed by matrix-assisted-laser-desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry, Western blot and by comparing the banding pattern of sample prepared in the presence of a reducing reagent. The fragments bands were identified as antibody lacking one light chain, two heavy chains, one light chain and one heavy chain, free heavy chain and free light chain. Sensitivity of fragmentation to sample buffer pH, incubation time, reducing reagent and alkylation reagents indicated that fragments were formed during sample preparation, but not present in the samples analyzed. Disulfide bond scrambling and β-elimination are the two major mechanisms of the formation antibody fragments. Mass spectrometry analysis suggested that disulfide bond scrambling can be prevented by specifically modifying free sulhydryl using alkylation and thus reduced the amount of artifacts on non-reducing SDS-PAGE. Breakage of disulfide bonds by β-elimination was evidenced by the detection of dehydroalanine using mass spectrometry.  相似文献   

13.
There are many examples of bioactive, disulfide‐rich peptides and proteins whose biological activity relies on proper disulfide connectivity. Regioselective disulfide bond formation is a strategy for the synthesis of these bioactive peptides, but many of these methods suffer from a lack of orthogonality between pairs of protected cysteine (Cys) residues, efficiency, and high yields. Here, we show the utilization of 2,2′‐dipyridyl diselenide (PySeSePy) as a chemical tool for the removal of Cys‐protecting groups and regioselective formation of disulfide bonds in peptides. We found that peptides containing either Cys(Mob) or Cys(Acm) groups treated with PySeSePy in trifluoroacetic acid (TFA) (with or without triisopropylsilane (TIS) were converted to Cys‐S–SePy adducts at 37 °C and various incubation times. This novel Cys‐S–SePy adduct is able to be chemoselectively reduced by five‐fold excess ascorbate at pH 4.5, a condition that should spare already installed peptide disulfide bonds from reduction. This chemoselective reduction by ascorbate will undoubtedly find utility in numerous biotechnological applications. We applied our new chemistry to the iodine‐free synthesis of the human intestinal hormone guanylin, which contains two disulfide bonds. While we originally envisioned using ascorbate to chemoselectively reduce one of the formed Cys‐S–SePy adducts to catalyze disulfide bond formation, we found that when pairs of Cys(Acm) residues were treated with PySeSePy in TFA, the second disulfide bond formed spontaneously. Spontaneous formation of the second disulfide is most likely driven by the formation of the thermodynamically favored diselenide (PySeSePy) from the two Cys‐S–SePy adducts. Thus, we have developed a one‐pot method for concomitant deprotection and disulfide bond formation of Cys(Acm) pairs in the presence of an existing disulfide bond.  相似文献   

14.
Alpha-Conotoxins, peptides produced by predatory species of Conus marine snails, are potent antagonists of nicotinic acetylcholine receptors (nAChRs), ligand-gated ion channels involved in synaptic transmission. We determined the NMR solution structure of the smallest known alpha-conotoxin, ImI, a 12 amino acid peptide that binds specifically to neuronal alpha7-containing nAChRs in mammals. Calculation of the structure was based on a total of 80 upper distance constraints and 31 dihedral angle constraints resulting in 20 representative conformers with an average pairwise rmsd of 0.44 A from the mean structure for the backbone atoms N, Calpha, and C' of residues 2-11. The structure of ImI is characterized by two compact loops, defined by two disulfide bridges, which form distinct subdomains separated by a deep cleft. Two short 310-helical regions in the first loop are followed by a C-terminal beta-turn in the second. The two disulfide bridges and Ala 9 form a rigid hydrophobic core, orienting the other amino acid side chains toward the surface. Comparison of the three-dimensional structure of ImI to those of the larger, 16 amino acid alpha-conotoxins PnIA, PnIB, MII, and EpI-also specific for neuronal nAChRs-reveals remarkable similarity in local backbone conformations and relative solvent-accessible surface areas. The core scaffold is conserved in all five conotoxins, whereas the residues in solvent-exposed positions are highly variable. The second helical region, and the specific amino acids that the helix exposes to solvent, may be particularly important for binding and selectivity. This comparative analysis provides a three-dimensional structural basis for interpretation of mutagenesis data and structure-activity relationships for ImI as well other neuronal alpha-conotoxins.  相似文献   

15.
An efficient scheme for the synthesis of alpha-conotoxins, containing 12-18 amino acid residues and two disulfide bridges, was proposed. Its advantages are: (1) the avoidance of orthogonal protections of Cys residues; (2) a lower number of stages in a cycle of the peptide chain elongation by the method of solid phase synthesis; (3) the linear product is sufficiently pure for being used at the next stage of the disulfide bond formation without additional purification; and (4) a substantially reduced time of oxidation to disulfides at pH 10, which led to the target product in a high yield. A number of natural alpha-conotoxins (GI, ImI, EI, MII, and SIA), affecting the muscle and neuronal nicotinic acetylcholine receptors of various types, and several new analogues of these conotoxins (in particular, [Tyr10]ImI, [Gln12]GI, and [Ser1]GI) were synthesized by this scheme. They were used for elucidating the spatial structure of alpha-conotoxins by 1H NMR spectroscopy and for studying the ligand-binding sites of their receptors.  相似文献   

16.
Platinum-based anticancer drugs such as cisplatin induce increased oxidative stress and oxidative damage of DNA and other cellular components, while selenium plays an important role in the antioxidant defense system. In this study, the interaction between a platinum(II) methionine (Met) complex [Pt(Met)Cl2] and a diselenide compound selenocystine [(Sec)2] was studied by electrospray ionization mass spectrometry, high performance liquid chromatography mass spectrometry, and 1H NMR spectroscopy. The results demonstrate that the diselenide bond in (Sec)2 can readily and quickly be cleaved by the platinum complex. Formation of the selenocysteine (Sec) bridged dinuclear complex [Pt2(Met-S,N)2(μ-Sec-Se,Cl)]3+ and Sec chelated species [Pt(Met-S,N)(Sec-Se,N)]2+ was identified at neutral and acidic media, which seems to result from the intermediate [Pt(Met-S,N)(Sec-Se)Cl]+. An accelerated formation of S-Se and S-S bonds was also observed when (Sec)2 reacted with excessive glutathione in the presence of [Pt(Met)Cl2]. These results imply that the mechanism of activity and toxicity of platinum drugs may be related to their fast reaction with seleno-containing biomolecules, and the chemoprotective property of selenium agents against cisplatin-induced toxicity could also be connected with such reactions.  相似文献   

17.
Allosteric disulfide bonds   总被引:5,自引:0,他引:5  
Schmidt B  Ho L  Hogg PJ 《Biochemistry》2006,45(24):7429-7433
Disulfide bonds have been generally considered to be either structural or catalytic. Structural bonds stabilize a protein, while catalytic bonds mediate thiol-disulfide interchange reactions in substrate proteins. There is emerging evidence for a third type of disulfide bond that can control protein function by triggering a conformational change when it breaks and/or forms. These bonds can be thought of as allosteric disulfides. To better define the properties of allosteric disulfides, we have analyzed the geometry and dihedral strain of 6874 unique disulfide bonds in 2776 X-ray structures. A total of 20 types of disulfide bonds were identified in the dataset based on the sign of the five chi angles that make up the bond. The known allosteric disulfides were all contained in 1 of the 20 groups, the -RHStaple bonds. This bond group has a high mean potential energy and narrow energy distribution, which is consistent with a functional role. We suggest that the -RHStaple configuration is a hallmark of allosteric disulfides. About 1 in 15 of all structurally determined disulfides is a potential allosteric bond.  相似文献   

18.
Ribonuclease T1 has two disulfide bonds linking cysteine residues 2-10 and 6-103. We have prepared a derivative of ribonuclease T1 in which one disulfide bond is broken and the cysteine residues carboxymethylated, (2-10)-RCM-T1, and three derivatives in which both disulfides are broken and the cysteine residues reduced, R-T1, carboxamidomethylated, RCAM-T1, or carboxymethylated, RCM-T1. The RNA hydrolyzing activity of these proteins has been measured, and urea and thermal denaturation studies have been used to determine conformational stability. The activity, melting temperature, and conformational stability of the proteins are: ribonuclease T1 (100%, 59.3 degrees C, 10.2 kcal/mol), (2-10)-RCM-T1 (86%, 53.3 degrees C, 6.8 kcal/mol), R-T1 (53%, 27.2 degrees C, 3.0 kcal/mol), RCAM-T1 (43%, 21.2 degrees C, 1.5 kcal/mol), and RCM-T1 (35%, 16.6 degrees C, 0.9 kcal/mol). Thus, the conformational stability is decreased by 3.4 kcal/mol when one disulfide bond is broken and by 7.2-9.3 kcal/mol when both disulfide bonds are broken. It is quite remarkable that RNase T1 can fold and function with both disulfide bonds broken and the cysteine residues carboxymethylated. The large decrease in the stability is due mainly to an increase in the conformational entropy of the unfolded protein which results when the constraints of the disulfide bonds on the flexibility are removed. We propose a new equation for predicting the effect of a cross-link on the conformational entropy of a protein: delta Sconf = -2.1 - (3/2)R 1n n, where n is the number of residues between the side chains which are cross-linked. This equation gives much better agreement with experimental results than other forms of this equation which have been used previously.  相似文献   

19.
Kaerner A  Rabenstein DL 《Biochemistry》1999,38(17):5459-5470
alpha-Conotoxin GI is a 13 residue snail toxin peptide cross-linked by Cys2-Cys7 and Cys3-Cys13 disulfide bridges. The formation of the two disulfide bonds by thiol/disulfide exchange with oxidized glutathione (GSSG) has been characterized. To characterize formation of the first disulfide bond in each of the two pathways by which the two disulfide bonds can form, two model peptides were synthesized in which Cys3 and Cys13 (Cono-1) or Cys2 and Cys7 (Cono-2) were replaced by alanines. Equilibrium constants were determined for formation of the single disulfide bonds of Cono-1 and Cono-2, and an overall equilibrium constant was measured for formation of the two disulfide bonds of alpha-conotoxin GI in pH 7.00 buffer and in pH 7. 00 buffer plus 8 M urea using concentrations obtained by HPLC analysis of equilibrium thiol/disulfide exchange reaction mixtures. The results indicate a modest amount of cooperativity in the formation of the second disulfide bond in both of the two-step pathways by which alpha-conotoxin GI folds into its native structure at pH 7.00. However, when considered in terms of the reactive thiolate species, the results indicate substantial cooperativity in formation of the second disulfide bond. The solution conformational and structural properties of Cono-1, Cono-2, and alpha-conotoxin GI were studied by 1H NMR to identify structural features which might facilitate formation of the disulfide bonds or are induced by formation of the disulfide bonds. The NMR data indicate that both Cono-1 and Cono-2 have some secondary structure in solution, including some of the same secondary structure as alpha-conotoxin GI, which facilitates formation of the second disulfide bond by thiol/disulfide exchange. However, both Cono-1 and Cono-2 are considerably less structured than alpha-conotoxin GI, which indicates that formation of the second disulfide bond to give the Cys2-Cys7, Cys3-Cys13 pairing induces considerable structure into the backbone of the peptide.  相似文献   

20.
The formation of disulfide bonds between cysteine residues is crucial for the stabilization of native protein structures and, thus, determination of disulfide linkages is an important facet of protein structural characterization. Nonetheless, the identification of disulfide bond linkages remains a significant analytical challenge, particularly in large proteins with complex disulfide patterns. Herein, we have developed a new LC/MS strategy for rapid screening of disulfides in an intact protein mixture after a straightforward reduction step with tris(2‐carboxyethyl)phosphine. LC/MS analysis of reduced and nonreduced protein mixtures quickly revealed disulfide‐containing proteins owing to a 2 Da mass increase per disulfide reduction and, subsequently, the total number of disulfide bonds in the intact proteins could be determined. We have demonstrated the effectiveness of this method in a protein mixture composed of both disulfide‐containing and disulfide‐free proteins. Our method is simple (no need for proteolytic digestion, alkylation, or the removal of reducing agents prior to MS analysis), high throughput (fast on‐line LC/MS analysis), and reliable (no S–S scrambling), underscoring its potential as a rapid disulfide screening method for proteomics applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号