首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel 4-(3-(trifluoromethyl)phenylamino-6-(4-(3-arylureiodo/arylthioureido/arylsulfonamido)-pyrimidine derivatives of biological interest were prepared by the sequential Suzuki cross coupling, acid amination, reduction followed by reaction of resulting amine with different arylisocyantes or arylisothiocyantes or arylsulfonyl chlorides. All the synthesized compounds (1-25) were screened for their pro-inflammatory cytokines (TNF-α and IL-6) and antimicrobial activity (antibacterial and antifungal). Biological data revealed that among all the compounds screened, compounds 5, 6, 11, 12, 16 and 20 were found to have moderate to potent anti-inflammatory activity (up to 48-78% TNF-α and 56-96% IL-6 inhibitory activity) with reference to standard dexamethasone at 10 μM. The compounds 10, 12, 13, 18, 20, 22, 24 and 25 found to have promising antimicrobial activity against all the selected pathogenic bacteria and fungi.  相似文献   

2.
Pyrrhocoricin is a naturally occurring antimicrobial peptide from the European fire bug Pyrrhocoris apterus. It has submicromolar activity against a range of Gram-negative bacterial strains and has created recent interest as a lead for the development of novel antibiotic compounds. In this study, we have used NMR spectroscopy to determine the solution structures of pyrrhocoricin and a synthetic macrocyclic derivative that has improved in vivo pharmaceutical properties. Native pyrrhocoricin is largely disordered in solution, but there is evidence of a subpopulation with ordered turn regions over residues 2-5, 4-7, and 16-19. The macrocyclic derivative incorporates a nine amino acid linker joining the N- and C-termini, which does not adversely affect the antimicrobial potency but leads to a broader spectrum of activity. The NMR data suggest that the turn conformations in the cyclic derivative are similar to those in the native form, thus implicating them in the biological function.  相似文献   

3.
In an effort to establish new drug candidates with improved antimicrobial and anticancer activities, we report here synthesis, molecular modeling, and in vitro biological evaluation of novel substituted N-amino phthalamide derivatives (3a-b, 4a-b, 5a-j, and 6). Structures of the newly synthesized compounds were described by IR, 1H & 13CNMR and LC-MS spectral data. The novel compounds were evaluated for their antibacterial activity against four types of Gm+ve and two for Gm−ve types, and antifungal activity against three fungi microorganisms by well diffusion method. Of these novel compounds, Schiff bases showed mostly promising antibacterial activity compared to reference drugs. A successful step was done for explanation of their mode of action through molecular docking of most active molecules at DNA gyrase B enzyme and further were biologically tested. Moreover, the antiproliferative activity was tested against two human carcinoma cell lines (Human colon carcinoma (HCT-116) and human breast adenocarcinoma (MCF-7)) showing promising anticancer activity compared to doxorubicin drug. The data from structure-activity relationship (SAR) analysis revealed that the lypophilic properties of these compounds might be essential parameter for their activity and suggest that 2-amino phthalamide scaffold derivatives 5g and 5h exhibited good antimicrobial and anticancer activities and might used as leads for further optimization.  相似文献   

4.
In an attempt to identify new potential lead as antimicrobial agent, 31 novel chloropyrrole derivatives of aroyl hydrazones and chalcones incorporating common pharmacophore of pyoluteorin derivatives were synthesized. Antimicrobial activity of the synthesized compounds was evaluated using broth dilution technique. Based on biological evaluation data it was observed that activity increases as the number of chlorines on pyrrole core increases. Few 1H-pyrrole-2-carbohydrazide derivatives shows activity equivalent to the standard drug ciprofloxacin. Thus, these compounds can act as potential lead for further antibacterial studies.  相似文献   

5.
《Journal of Asia》2019,22(1):175-182
Major royal jelly proteins (MRJPs) are important protein components of bee royal jelly (RJ) and exhibit various biological and pharmacological activities. The antimicrobial activities of the royalisin and the jelleines contained within MRJP 1 and MRJP 2 in RJ have been elucidated. However, the antimicrobial effects of other MRJPs remain largely unknown. In this study, we demonstrated the antimicrobial activity of the Asiatic honeybee (Apis cerana) MRJP 4 (AcMRJP4). Recombinant AcMRJP4 was expressed as a 63-kDa protein in baculovirus-infected insect cells. We examined the antimicrobial activity of recombinant AcMRJP4 against bacteria, fungi, and yeast. The mechanisms underlying the antimicrobial activity of AcMRJP4 were assessed using western blot analysis, immunofluorescence staining, and scanning electron microscopy. Recombinant AcMRJP4 bound to the cell walls of bacteria, fungi, and yeast and induced structural damage in the microbial cell walls. AcMRJP4 has an antimicrobial role and exhibits a broad spectrum of antimicrobial activities against bacteria, fungi, and yeast. We demonstrated that AcMRJP4 functions as an antimicrobial agent with activity against bacteria, fungi, and yeast. Together, our data identified a novel function of MRJP 4 as an antimicrobial agent.  相似文献   

6.
Angiotensin-converting enzyme (ACE) plays a major role in the regulation of blood pressure. A diagnostic assay to measure angiotensin-converting enzyme (ACE) activity was transformed into an enzyme inhibition assay and optimised, which led to a more sensitive and less expensive assay. By this spectrophotometric method, ACE inhibition is measured using the substrate furanacryloyl-Phe-Gly-Gly and as ACE source rabbit lung acetone extract. The optimised as well as the original ACE inhibition assay were used to verify the ACE inhibitory activity of captopril. The ACE inhibition assay was further validated by enalapril, its active derivative enalaprilat and the ACE-inhibitory peptide Ala-Leu-Pro-Met-His-Ile-Arg, corresponding to a tryptic fragment of bovine beta-lactoglobulin. Sigmoid curves could be fit adequately to the data points representing ACE inhibition in function of inhibitor concentration. IC(50) values for these compounds corresponded well with literature data. Furthermore, pea and whey protein hydrolysates obtained by digestion with trypsin showed ACE inhibitory activity in the ACE inhibition assay. Hence, this optimised assay is suitable to screen for ACE inhibitory peptides derived from food proteins with a possible antihypertensive effect in vivo.  相似文献   

7.
A series of novel hybrid molecules 4a-y containing thiazole and benzotriazole templates were designed and synthesized. The structures of the synthesized compounds were elucidated by IR, (1)H NMR, (13)C NMR and mass spectral data. All the synthesized compounds were tested for their antimicrobial activity (zone of inhibition) against Gram-positive, Gram-negative strains of bacteria as well as fungal strains. After that minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and minimum fungicidal concentrations (MFCs) of all the synthesized compounds were determined. The investigation of antimicrobial screening data revealed that most of the tested compounds showed moderate to good microbial inhibitions.  相似文献   

8.
Various synthetic pathways of the 30 novel 2-substituted 5,7-di-tert-butylbenzoxazoles as new potential antimicrobial drugs are discussed. The 28 intermediates are described as well. The compounds were characterized by 1H and 13C NMR spectra, MS spectra, IR/UV spectra and by means of CHN analysis. The purity of the final compounds was checked by HPLC and their lipophilicity (log K) was also determined by means of RP-HPLC. In the present study, the correlation between RP-HPLC retention parameter log K (the logarithm of capacity factor K) and various calculated log P data is shown. The target compounds were tested for their in vitro antimycobacterial activity. Several compounds showed antituberculotic activity comparable with or higher than the standard isoniazide. In vitro cytotoxicity testing of the most active benzoxazoles and isoniazide as a reference drug was performed using MTT assay and compared with isoniazide as a reference drug. Structure-activity relationships among the chemical structures, the physical properties and the biological activities of the evaluated compounds are discussed in the article.  相似文献   

9.
Innovative therapeutic heterocycles having precisely thiadiazolyl-pyranopyrazole fragments were prepared by using the ecofriendly synthetic route. Entire compounds formed in quantitative yields. All the composites tested for their antimicrobial effectiveness against four microbial, two beneficial fungi’s and accurately measured the minimum inhibitory concentrations (MIC and MBC/MFC), along with some initial structure activity relationships (SARs) also discussed. From the biological outcomes, the motif 6f provided an outstanding activity against all six pathogens. The possible presence of a nitro substituent on this composite may undoubtedly enhance the activity. In addition, amalgams 6d, 6g and 6l displayed promising antimicrobial results. This may be justified to the presence of electron capture group attached to the benzene ring, while the combinations 6j and 6k were zero effect towards all bacterial strains. The other compounds were excellent to low antimicrobial efficiency. The intriguing point was observed that all the active compounds had in common immense antibacterial effectiveness on Gram-negative bacteria than Gram-positive one and more antifungal activity on A. niger compare to other fungus. All things considered and suggested that this outstanding green synthetic approach is used to develop biological active compounds. On top of that, biological results confirmed that these biologically energetic motifs suitable for additional preclinical examine with the aim of standing novel innovative drugs.  相似文献   

10.
11.
12.
《Fungal Biology Reviews》2012,26(4):132-145
Antimicrobial proteins (AMPs) are widely distributed in nature. In higher eukaryotes, AMPs provide the host with an important defence mechanism against invading pathogens. AMPs of lower eukaryotes and prokaryotes may support successful competition for nutrients with other microorganisms of the same ecological niche. AMPs show a vast variety in structure, function, antimicrobial spectrum and mechanism of action. Most interestingly, there is growing evidence that AMPs also fulfil important biological functions other than antimicrobial activity. The present review focuses on the mechanistic function of small, cationic, cysteine-rich AMPs of mammals, insects, plants and fungi with antifungal activity and specifically aims at summarizing current knowledge concerning additional biological properties which opens novel aspects for their future use in medicine, agriculture and biotechnology.  相似文献   

13.
《Fungal Biology Reviews》2013,27(4):132-145
Antimicrobial proteins (AMPs) are widely distributed in nature. In higher eukaryotes, AMPs provide the host with an important defence mechanism against invading pathogens. AMPs of lower eukaryotes and prokaryotes may support successful competition for nutrients with other microorganisms of the same ecological niche. AMPs show a vast variety in structure, function, antimicrobial spectrum and mechanism of action. Most interestingly, there is growing evidence that AMPs also fulfil important biological functions other than antimicrobial activity. The present review focuses on the mechanistic function of small, cationic, cysteine-rich AMPs of mammals, insects, plants and fungi with antifungal activity and specifically aims at summarizing current knowledge concerning additional biological properties which opens novel aspects for their future use in medicine, agriculture and biotechnology.  相似文献   

14.
Palm S  Roman E  Nylander I 《Peptides》2012,33(1):1-8
Mammalian cationic antimicrobial peptides have received increased attention over the last decade, due to their prokaryotic selectivity and decreased risk of microbial resistance. In addition, antimicrobial peptides display differential biological effects on mammalian immune cell function, such as migration, adhesion, and modulation of respiratory burst, which make them even more attractive as therapeutic agents. Synthetic combinatorial libraries provide a time-efficient and cost-effective source for these diverse molecules. The novel synthetic antimicrobial peptide, KSLW (KKVVFWVKFK-NH(2)), has been shown to display a broad spectrum of antimicrobial activity against Gram (+) and Gram (-) bacteria, fungi and viruses. In this study, we evaluated the alternative biological activity of the decapeptide on neutrophil migration and function. KSLW was demonstrated to be chemotactic for neutrophils in micromolar amounts, and neutrophil treatment with KSLW, after 1 min, resulted in significant increases in F-actin polymerization. KSLW was shown to inhibit oxygen radical production in PMA- and LPS-stimulated neutrophils. Future studies, to determine if KSLW regulates neutrophil phagocytosis, adhesion, and apoptosis, or examining the effect of KSLW on other mammalian cell types, such as cell populations of healing-impaired wounds, would provide significant insight for the potential therapeutic strategies offered by antimicrobial peptides.  相似文献   

15.

Antimicrobial peptides (AMPs) are compounds widely distributed in nature that display activity against a broad spectrum of pathogens. Amphibian skin, as an organ rich in pharmacologically active peptides, appears to be an interesting source of novel AMPs. Aurein 1.2 (GLFDIIKKIAESF-NH2) is a short 13-residue antimicrobial peptide primarily isolated from the skin secretions of Australian bell frogs. In this study, the alanine scan of aurein 1.2 was performed to investigate the effect of each amino acid residue on its biological and physico-chemical properties. The biological studies included determination of minimum inhibitory concentration, activity against biofilm, and inhibitory effect on its formation. Moreover, the hemolytic activity as well as serum stability was determined. The hydrophobicity of peptides and their self-assembly were investigated using reversed-phase chromatography. In addition, their helicity was calculated from circular dichroism spectra. The results not only provided information on structure-activity relationship of aurein 1.2 but also gave insights into design of novel analogs of AMPs in the future.

  相似文献   

16.
In this study, three new axially disubstituted silicon phthalocyanines ( SiPc1–3 ) and their quaternized phthalocyanine derivatives ( QSiPc1–3 ) were prepared and characterized. The biological properties (antioxidant, antimicrobial, antibiofilm, and microbial cell viability activities) of the water-soluble silicon phthalocyanines were examined, as well. A 1 % DMSO diluted with pure water was used as a solvent in biological activity studies. All the compounds exhibited high antioxidant activity. They displayed efficient antimicrobial and antimicrobial photodynamic therapeutic properties against various microorganisms, especially Gram (+) bacteria. Additionally, they demonstrated high antibiofilm activities against S. aureus and P. aeruginosa. In addition, 100 % bacterial reduction was obtained for all the studied phthalocyanines against E. coli viable cells. Besides, the DNA cleavage and binding features of compounds ( QSiPc1–3 ) were studied using pBR322 DNA and CT-DNA, respectively. Furthermore, the human topoisomerase I enzyme inhibition activities of compounds QSiPc1 – 3 were studied. Anticancer properties of the water-soluble compounds were investigated using cell proliferation MTT assay. They exhibited anticarcinogenic activity against the human colon cancer cell line (DLD-1). Compounds QSiPc1 and QSiPc3 displayed a high anticarcinogenic effect on the DLD-1 cell line. The obtained results indicated that all the studied compounds may be effective biological agents and anticancer drugs after further investigations.  相似文献   

17.
Novel peptide inhibitors of angiotensin-converting enzyme 2   总被引:23,自引:0,他引:23  
Angiotensin-converting enzyme 2 (ACE2), a recently identified human homolog of ACE, is a novel metallocarboxypeptidase with specificity, tissue distribution, and function distinct from those of ACE. ACE2 may play a unique role in the renin-angiotensin system and mediate cardiovascular and renal function. Here we report the discovery of ACE2 peptide inhibitors through selection of constrained peptide libraries displayed on phage. Six constrained peptide libraries were constructed and selected against FLAG-tagged ACE2 target. ACE2 peptide binders were identified and classified into five groups, based on their effects on ACE2 activity. Peptides from the first three classes exhibited none, weak, or moderate inhibition on ACE2. Peptides from the fourth class exhibited strong inhibition, with equilibrium inhibition constants (K(i) values) from 0.38 to 1.7 microm. Peptides from the fifth class exhibited very strong inhibition, with K(i) values < 0.14 microm. The most potent inhibitor, DX600, had a K(i) of 2.8 nm. Steady-state enzyme kinetic analysis showed that these potent ACE2 inhibitors exhibited a mixed competitive and non-competitive type of inhibition. They were not hydrolyzed by ACE2. Furthermore, they did not inhibit ACE activity, and thus were specific to ACE2. Finally, they also inhibited ACE2 activity toward its natural substrate angiotensin I, suggesting that they would be functional in vivo. As novel ACE2-specific peptide inhibitors, they should be useful in elucidation of ACE2 in vivo function, thus contributing to our better understanding of the biology of cardiovascular regulation. Our results also demonstrate that library selection by phage display technology can be a rapid and efficient way to discover potent and specific protease inhibitors.  相似文献   

18.
A wild-type, Gram-positive, rod-shaped, endospore-forming and motile bacteria has been isolated from palm oil mill sludge in Malaysia. Molecular identification using 16S rRNA gene sequence analysis indicated that the bacteria belonged to genus Paenibacillus. With 97 % similarity to P. alvei (AUG6), the isolate was designated as P. alvei AN5. An antimicrobial compound was extracted from P. alvei AN5-pelleted cells using 95 % methanol and was then lyophilized. Precipitates were re-suspended in phosphate buffered saline (PBS), producing an antimicrobial crude extract (ACE). The ACE showed antimicrobial activity against Salmonella enteritidis ATCC 13076, Escherichia coli ATCC 29522, Bacillus cereus ATCC 14579 and Lactobacillus plantarum ATCC 8014. By using SP-Sepharose cation exchange chromatography, Sephadex G-25 gel filtration and Tricine SDS-PAGE, the ACE was purified, which produced a ~2-kDa active band. SDS-PAGE and infrared (IR) spectroscopy indicated the proteinaceous nature of the antimicrobial compound in the ACE, and liquid chromatography electrospray ionization mass spectroscopy and de novo sequencing using an automatic, Q-TOF premier system detected a peptide with the amino acid sequence F–C–K–S–L–P–L–P–L–S–V–K (1,330.7789 Da). This novel peptide was designated as AN5-2. The antimicrobial peptide exhibited stability from pH 3 to 12 and maintained its activity after being heated to 90 °C. It also remained active after incubation with denaturants (urea, SDS and EDTA).  相似文献   

19.
The antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Escherichia coli, as well as the antifungal activity against Aspergillus niger of a series of anilide derivatives have been modeled using augmented multivariate image analysis applied to quantitative structure–activity relationship (aug-MIA-QSAR). This QSAR approach is based on 2D molecular shape, as well as atomic sizes and colors to encode chemical, physical and biological properties. Predictive models with r2 from 0.65 to 0.83 were used to estimate the antimicrobial activities of novel anilide analogs, which were built from the combination of substructures of the most active antimicrobial compounds along the series. Given the synergistic effect of different substituents to provide new molecules, promising compounds were proposed, highlighting a considerable multi-antimicrobial activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号