首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Smad4 is required for the normal organization of the cartilage growth plate   总被引:6,自引:0,他引:6  
Zhang J  Tan X  Li W  Wang Y  Wang J  Cheng X  Yang X 《Developmental biology》2005,284(2):311-322
Smad4 is the central intracellular mediator of transforming growth factor-beta (TGF-beta) signals. To study the role of Smad4 in skeletal development, we introduced a conditional mutation of the gene in chondrocytes using Cre--loxP system. We showed that Smad4 was expressed strongly in prehypertrophic and hypertrophic chondrocytes. The abrogation of Smad4 in chondrocytes resulted in dwarfism with a severely disorganized growth plate characterized by expanded resting zone of chondrocytes, reduced chondrocyte proliferation, accelerated hypertrophic differentiation, increased apoptosis and ectopic bone collars in perichondrium. Meanwhile, Smad4 mutant mice exhibited decreased expression of molecules in Indian hedgehog/parathyroid hormone-related protein (Ihh/PTHrP) signaling. The cultured mutant metatarsal bones failed to response to TGF-beta1, while the hypertrophic differentiation was largely inhibited by Sonic hedgehog (Shh). This indicated that Ihh/PTHrP inhibited the hypertrophic differentiation of chondrocytes independent of the Smad4-mediated TGF-beta signals. All these data provided the first genetic evidence demonstrating that Smad4-mediated TGF-beta signals inhibit the chondrocyte hypertrophic differentiation, and are required for maintaining the normal organization of chondrocytes in the growth plate.  相似文献   

3.
4.
Indian hedgehog (Ihh) and Parathyroid Hormone-related Protein (PTHrP) play a critical role in the morphogenesis of the vertebrate skeleton. Targeted deletion of Ihh results in short-limbed dwarfism, with decreased chondrocyte proliferation and extensive hypertrophy, features shared by mutants in PTHrP and its receptor. Activation of Ihh signaling upregulates PTHrP at the articular surface and prevents chondrocyte hypertrophy in wild-type but not PTHrP null explants, suggesting that Ihh acts through PTHrP. To investigate the relationship between these factors during development of the appendicular skeleton, mice were produced with various combinations of an Ihh null mutation (Ihh(-/-)), a PTHrP null mutation (PTHrP(-/-)), and a constitutively active PTHrP/Parathyroid hormone Receptor expressed under the control of the Collagen II promoter (PTHrPR*). PTHrPR* rescues PTHrP(-/-) embryos, demonstrating this construct can completely compensate for PTHrP signalling. At 18.5 dpc, limb skeletons of Ihh, PTHrP compound mutants were identical to Ihh single mutants suggesting Ihh is necessary for PTHrP function. Expression of PTHrPR* in chondrocytes of Ihh(-/-) mice prevented premature chondrocyte hypertrophy but did not rescue either the short-limbed dwarfism or decreased chondrocyte proliferation. These experiments demonstrate that the molecular mechanism that prevents chondrocyte hypertrophy is distinct from that which drives proliferation. Ihh positively regulates PTHrP, which is sufficient to prevent chondrocyte hypertrophy and maintain a normal domain of cells competent to undergo proliferation. In contrast, Ihh is necessary for normal chondrocyte proliferation in a pathway that can not be rescued by PTHrP signaling. This identifies Ihh as a coordinator of skeletal growth and morphogenesis, and refines the role of PTHrP in mediating a subset of Ihh's actions.  相似文献   

5.
6.
In developing murine growth plates, chondrocytes near the articular surface (periarticular chondrocytes) proliferate, differentiate into flat column-forming proliferating cells (columnar chondrocytes), stop dividing and finally differentiate into hypertrophic cells. Indian hedgehog (Ihh), which is predominantly expressed in prehypertrophic cells, stimulates expression of parathyroid hormone (PTH)-related peptide (PTHrP) which negatively regulates terminal chondrocyte differentiation through the PTH/PTHrP receptor (PPR). However, the roles of PTHrP and Ihh in regulating earlier steps in chondrocyte differentiation are unclear. We present novel mouse models with PPR abnormalities that help clarify these roles. In mice with chondrocyte-specific PPR ablation and mice with reduced PPR expression, chondrocyte differentiation was accelerated not only at the terminal step but also at an earlier step: periarticular to columnar differentiation. In these models, upregulation of Ihh action in the periarticular region was also observed. In the third model in which the PPR was disrupted in about 30% of columnar chondrocytes, Ihh action in the periarticular chondrocytes was upregulated because of ectopically differentiated hypertrophic chondrocytes that had lost PPR. Acceleration of periarticular to columnar differentiation was also noted in this mouse, while most of periarticular chondrocytes retained PPR signaling. These data suggest that Ihh positively controls differentiation of periarticular chondrocytes independently of PTHrP. Thus, chondrocyte differentiation is controlled at multiple steps by PTHrP and Ihh through the mutual regulation of their activities.  相似文献   

7.
8.
9.
Differentiation and growth of chondrocytes in fetal growth plates of vertebrate long bones and ribs appear to occur in a gradual, continuous manner between the resting zone through the proliferation zone, maturation zone, and upper and lower hypertrophic zones, with a continuous increase in cell size up to 10-fold of the volume of a resting chondrocyte. Here we provide evidence, however, that after centrifugation through a continuous Percoll gradient growth plate chondrocytes separate into four distinct cell populations (B1 to B4) which differ markedly in density, size, and gene expression. These populations collect in the absence of any phase borders in the gradient which might serve as concentration barriers. Fractions B1 and B2 contained the largest cells with the lowest buoyant density and showed the highest expression levels for type X collagen (Col X), but only the B1 population expressed high levels of matrix metalloproteinase-13 (collagenase 3). Cells in fraction B3 were significantly smaller and expressed little Col X, while cells in fraction B4 were of similar size to cells in the resting zone without significant Col X expression. The highest levels of parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR-1), and Indian hedgehog (Ihh) expression were also found in the hypertrophic fractions B1 and B2 and not in the prehypertrophic fraction B3, as expected from in situ hybridization data on PTHR-1 expression in fetal rodent or chicken growth plates. Incubation of fractions B1 to B3 with the amino-terminal fragments PTH (1-34) or PTHrP (1-40) suppressed the expression of Col X and PTHR-1 by more than 50% and the expression of Ihh nearly completely. In contrast, the mid-regional PTH fragment PTH (28-48) and PTH (52-84) consistently stimulated the expression of PTHR-1 by 10-20% in fractions B1 to B3. These findings confirm the existence of distinct differentiation stages within chondrocytes of the growth plate and support the hypothesis proposed by Vortkamp et al. (Science 273(1996)613) of a regulatory feedback loop of Ihh and PTH/PTHrP fragments controlling the differentiation of proliferating to prehypertrophic chondrocytes, but extend the ability to respond to PTH/PTHrP hypertrophic chondrocytes.  相似文献   

10.
During endochondral ossification, two secreted signals, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP), have been shown to form a negative feedback loop regulating the onset of hypertrophic differentiation of chondrocytes. Bone morphogenetic proteins (BMPs), another family of secreted factors regulating bone formation, have been implicated as potential interactors of the Ihh/PTHrP feedback loop. To analyze the relationship between the two signaling pathways, we used an organ culture system for limb explants of mouse and chick embryos. We manipulated chondrocyte differentiation by supplementing these cultures either with BMP2, PTHrP and Sonic hedgehog as activators or with Noggin and cyclopamine as inhibitors of the BMP and Ihh/PTHrP signaling systems. Overexpression of Ihh in the cartilage elements of transgenic mice results in an upregulation of PTHrP expression and a delayed onset of hypertrophic differentiation. Noggin treatment of limbs from these mice did not antagonize the effects of Ihh overexpression. Conversely, the promotion of chondrocyte maturation induced by cyclopamine, which blocks Ihh signaling, could not be rescued with BMP2. Thus BMP signaling does not act as a secondary signal of Ihh to induce PTHrP expression or to delay the onset of hypertrophic differentiation. Similar results were obtained using cultures of chick limbs. We further investigated the role of BMP signaling in regulating proliferation and hypertrophic differentiation of chondrocytes and identified three functions of BMP signaling in this process. First we found that maintaining a normal proliferation rate requires BMP and Ihh signaling acting in parallel. We further identified a role for BMP signaling in modulating the expression of IHH: Finally, the application of Noggin to mouse limb explants resulted in advanced differentiation of terminally hypertrophic cells, implicating BMP signaling in delaying the process of hypertrophic differentiation itself. This role of BMP signaling is independent of the Ihh/PTHrP pathway.  相似文献   

11.
Normal endochondral bone development requires the coordination of chondrocyte proliferation and differentiation. Indian hedgehog (Ihh) is a morphogen produced by chondrocytes in the early stage of terminal differentiation and plays several key roles in this process. Ihh regulates growth of adjacent proliferative chondrocytes and can also regulate the rate of differentiation of chondrocytes indirectly through its stimulation of parathyroid hormone-related protein (PTHrP). In this review, we focus on recent studies that have identified new functions of Ihh and how Ihh itself is being regulated.  相似文献   

12.
We have developed a useful approach to examine the pattern of gene expression in comparison to cell proliferation, using double in situ hybridization and immunofluorescence. Using this system, we examined the expression of Indian hedgehog (Ihh) and PTH/PTHrP receptor (PPR) mRNA in relation to chondrocyte proliferation during embryonic mouse bone development. Both genes are expressed strongly in prehypertrophic and early hypertrophic chondrocytes, and there is a strong correlation between upregulation of both Ihh and PPR expression and chondrocyte cell cycle arrest. At embryonic day (E14.5), PPR mRNA upregulation begins in the columnar chondrocytes just prior to cell cycle exit, but at later time points expression is only observed in the postproliferative region. In contrast, Ihh mRNA expression overlaps slightly with the region of columnar proliferating chondrocytes at all stages. This study provides further evidence that in the developing growth plate, cell cycle exit and upregulation of Ihh and PPR mRNA expression are coupled.  相似文献   

13.
Indian hedgehog (Ihh) is highly expressed in prehypertrophic chondrocytes in vivo and has been proposed to regulate the proliferation and maturation of chondrocytes and bone collar formation in the growth plate. In high-density cultures of rabbit growth-plate chondrocytes, Ihh mRNA was also expressed at the highest level in the prehypertrophic stage. To explore endogenous factors that regulate Ihh expression in chondrocytes, we examined the effects of various growth factors on Ihh mRNA expression in this system. Retinoic acid (RA) and bone morphogenetic protein-2 enhanced Ihh mRNA expression, whereas PTH/PTH-related peptide (PTHrP) markedly suppressed Ihh expression. RA at more than 10(-8) M induced the expression of Ihh and Patched 1 (Ptc1) within 3 h, before it increased the type X collagen mRNA level at 6-24 h. Cycloheximide blocked the up-regulation of Ihh by RA, indicating the requirement of de novo protein synthesis for this stimulation. These findings suggest that RA is involved in the up-regulation of Ihh during endochondral bone formation. In contrast to RA, PTH (1-84) at 10(-7) M abolished the mRNA expression of Ihh and Ptc1 within 2-4 h, before it suppressed the expression of type X collagen at 12-24 h. The inhibition of Ihh expression by PTH (1-84) did not require de novo protein synthesis. PTH (1-34), PTHrP (1-34), and (Bu)(2)cAMP also suppressed Ihh expression. On the other hand, Ihh has been reported to induce PTHrP synthesis in the perichondrium. Consequently, the direct inhibitory action of PTH/PTHrP on Ihh appears to be a negative feedback mechanism that prevents excess PTHrP accumulation in cartilage.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号