首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staphylococcus aureus mutants resistant to the nonionic detergent Triton X-100, isolated from the wild-type strain H and the autolysin-deficient strain RUS3, could grow and divide in broth containing 5% (vol/vol) Triton X-100, while growth of the parental strains was markedly inhibited above the critical micellar concentration (0.02%) of the detergent. Growth-inhibitory concentrations of Triton X-100 killed wild-type cells without demonstrable cellular lysis. Triton X-100 stimulated autolysin activity of S. aureus cells under nongrowing conditions, and this lytic response was markedly reduced in energy-poisoned cells. In contrast, the detergent had no effect on the activity of autolysins in cell-free systems, and growth in the presence of Triton X-100 did not alter either the cellular autolysin activity or the susceptibility of cell walls to exogenous lytic enzymes. Treatment with either Triton X-100 or penicillin G in the growth medium stimulated release of predominantly acylated intracellular lipoteichoic acid and sensitized staphylococci to Triton X-100-induced autolysis. There was no significant difference in the cell wall and membrane compositions or Triton X-100 binding between the parental strains and the resistant mutants. The resistant mutant TXR1, derived from S. aureus H, had a higher level of L-alpha-glycerophosphate dehydrogenase activity, and its oxygen uptake was more resistant to inhibition by a submicellar concentration (0.008%) of Triton X-100. Growth in the presence of subinhibitory concentrations of Triton X-100 rendered S. aureus H cells phenotypically resistant to the detergent and greatly stimulated the level of oxygen uptake. Membranes isolated from such cells exhibited enhanced activity of the respiratory enzymes succinic dehydrogenase and L-alpha-glycerophosphate dehydrogenase.  相似文献   

2.
Vinay Sharma  Dieter Strack 《Planta》1985,163(4):563-568
The distribution of l-malate, sinapic acid esters and 1-sinapoylglucose: l-malate sinapoyltransferase (SMT) which catalyzes the synthesis of sinapoyl-l-malate were examined in preparations of protoplasts obtained from cotyledons of red radish (Raphanus sativus L. var. sativus). Vacuoles isolated from the protoplasts contained all of the SMT activity, all of the accumulated sinapic acid esters and about 50% of free l-malate present initially in the protoplasts. An esterase activity, acting on 1-sinapoyglucose, was found to be exclusively localized in the cytoplasm and a large proportion was found to be recoverable in a 100 000-g pellet obtained from protoplast lysates. The vacuoles were obtained after lysis of the protoplasts by osmotic shock and purification on a Ficoll gradient. The cytoplasmic contamination of vacuole preparations was found to be about 10%, as judged by enzymatic markers and microscopic inspection. No SMT activity was found in a 100 000-g pellet obtained from vacuole lysates. The results indicate that biosynthesis of sinapoyl-l-malate takes place within the central vacuoles of redradish cotyledons.Abbreviation SMT 1-sinapoylglucose: l-malate sinapol-transferase  相似文献   

3.
Summary The effects produced by the detergents Triton X-100, sodium dodecylsulphate and sodium cholate on sarcoplasmic reticulum vesicles have been comparatively studied. In all cases, maximal effects are found 5 min after detergent addition. Triton X-100 and SDS are approximately ten times more effective than cholate in protein and phospholipid solubilization. Both Triton X-100 and SDS maintain Ca++ accumulation in SR vesicles at detergent concentrations below 10–3 M; higher concentrations cause a strong inhibition. On the other hand, cholate produces a gradual inhibition of Ca++ accumulation in the concentration range between 10–4 M and 2.5 × 10–2 M. Triton X-100 and SDS produce a gradual solubilization of the specific Ca++-ATPase activity up to a 10–3 M detergent concentration, above which a strong inactivation occurs, while the enzyme solubilization increases with the presence of cholate in the whole concentration range under study. The different behaviour of sodium cholate, when compared to SDS or Triton X-100, is discussed in relation to the surfactant molecular structures. The possibility of membrane lysis and reassembly in the presence of some detergents is also considered.Abbreviations SR sarcoplasmic reticulum - SDS sodium dodecylsulphate - DTT dithiothreitol - EGTA ethyleneglycoltetraacetate - PEP phosphoenolpyruvate  相似文献   

4.
The effects of detergents on the lysozyme-catalyzed hydrolysis of Micrococcus lysodeikticus cells were investigated by changing the concentration of Na-phosphate buffer and pH in the presence or absence of sucrose. Also, a parallel study of the hydrolysis of glycolchitin by lysozyme was conducted and compared to the lytic reaction. Electron microscopy was utilized to follow the changes in cell morphology during the various treatments.

None of the detergents changed turbidity of the cell suspension. However, they did affect the change in turbidity during lysis in unique ways. SDS, which is an anionic detergent, inhibited lysozyme activity and its addition to the reaction mixture caused a rapid and large decrease in the turbidity. Brij 35 and Triton X-100, which are non-ionic detergents, did not inhibit lysozyme activity, but their presence in the reaction mixture changed the rate of turbidity change. Apparently non-ionic detergents disrupt only the protoplast, while anionic detergents disrupt both the protoplast and the damaged cell. The lytic mechanism of M. lysodeikticus by lysozyme was discussed in detail.  相似文献   

5.
In this study, we characterized the essentiality of enolase for growth of Staphylococcus aureus in vitro by using a TetR-regulated antisense RNA expression technology. The induced enolase antisense RNA dramatically decreased the production of enolase, which in turn inhibited the growth of S. aureus. In addition, we found that the down-regulation of eno expression can effectively inhibit Triton X-100-induced lysis and alleviate penicillin-caused cell lysis. To further confirm the specific effect of enolase on autolysis, we constructed an enolase over-expression system and demonstrated that the over-expression of enolase enhances both Triton X-100 and penicillin-induced cell lysis without increasing cell growth rate. We also performed hydrolase induced autolysis and zymographic assays and found that enolase had no impact on either bacterial sensitivity to hydrolase or hydrolase activity. Moreover, we found that the down-regulating expression of enolase selectively increased bacterial sensitivity to phosphomycin. Taken together, the above results suggest that the enolase is essential for S. aureus and involved in the process of bacterial autolysis.  相似文献   

6.
Growth ofSelenomonas ruminantium HD4 in medium that contained 21mm d-lactate was stimulated to varying degrees by 10mm l-malate, 10mm fumarate, and 2% (v/v)Aspergillus oryzae fermentation extract (Amaferm). Amaferm treatment caused the greatest growth stimulation. Initial uptake rates (30s) and long-term uptake rates (30 min) ofd-lactate by whole cells ofS. ruminantium were increased in the presence of 10mm l-malate. Amaferm (25 l/ml) also stimulated long-term uptake rates ofd-lactate, whereas fumarate had no effect. Initial uptake ofd-lactate was depressed in the presence of fumarate or Amaferm. When eitherl-malate, fumarate, or Amaferm was included in thed-lactate growth medium, a homosuccinate fermentation resulted and an inverse relationship was observed between growth (protein synthesis) and succinate production. Recent research demonstrated that Amaferm containsl-malate, and this dicarboxylic acid may be involved in stimulatingd-lactate utilization byS. ruminantium.  相似文献   

7.
Summary We demonstrate that the high affinity bumetanide binding site of the rabbit parotid acinar cell can be extracted from a basolateral membrane fraction using relatively low concentrations (0.07%, wt/vol; 1 mg membrane protein/ml) of the nonionic detergent Triton X-100. This extracted site cannot be sedimented by ultracentrifugation at 100,000 ×g × 1 hr. Bumetanide binding to this site retains the ionic characteristics of bumetanide binding to native membranes but shows a fivefold increase in binding affinity (K d=0.57±0.15 m vs.K d=3.3±0.7 m for native membranes). Inactivation of the extracted bumetanide binding site observed at detergent/protein ratios>1 can be prevented or (partially) reversed by the addition of exogenous lipid (0.2% soybean phosphatidylcholine). When the 0.07% Triton extract is fractionated by sucrose density gradient centrifugation in 0.24% Triton X-100, 0.2% exogenous lipid and 200mm salt, the high affinity bumetanide binding site sediments as a single band withS 20,w =8.8±0.8 S. This corresponds to a molecular weight 200 kDa for the bumetanide binding protein-detergent-lipid complex and represents a sevenfold purification of this site relative to the starting membrane fraction. In contrast to previous attempts to purify Na/K/Cl cotransport proteins and their associated bumetanide binding sites, the present method avoids harsh detergent treatment as well as direct covalent modification (inactivation) of the transporter itself. As a consequence, one can follow the still active protein through a series of extraction and purification steps by directly monitoring its bumetanide binding properties.  相似文献   

8.
The solubilization of human gel-filtered platelets by octyl glucoside, Triton X-100, dodecylsulfate, and deoxycholate was compared from the analysis of (1) cell lysis, (2) marker leakiness, and (3) component solubility. These analyses all revealed that the effect of detergent concentration on the solubilization of platelets by these detergents was exerted in three stages, i.e., the prelytic, lytic, and complete platelet-lysis stages. These analyses also indicated several differences among platelets in these detergents. (i) The ratio of the platelet-saturation concentration (PSC) to critical micellar concentration (CMC) was about 1/2 for octyl glucoside. Triton X-100 and dodecylsulfate, while it was close to 1 for deoxycholate. (ii) Platelets in octyl glucoside. Triton X-100, and dodecylsulfate all showed parallel curves in cell lysis, protein solubilization and marker leakiness, while the platelet lysis in deoxycholate was identical to the phospholipid solubilization. (iii) The solubility curves of various components in Triton X-100 and deoxycholate were parallel. However, the solubility of cholesterol in octyl glucoside was lower than that of protein and phospholipid. In dodecylsulfate, the solubility of phospholipid and cholesterol was very low in comparison with that of protein. In addition, morphological studies using scanning electron microscopy (scanning EM) revealed that the solubilization by octyl glucoside or Triton X-100 might occur via membrane area expansion. On the other hand, the solubilization by dodecylsulfate or deoxycholate showed membrane vesiculation prior to cell lysis. Moreover, in the prelytic stage, the morphological change in platelets in octyl glucoside showed only concentration dependence by swelling to an ellipsoid and then to a sphere. However, the morphological change in platelets in the other three detergents was dependent not only on the detergent concentration but also on prolonged incubation. Specifically, in Triton X-100, the cells initially changed to spiculate discs and then reached their final shape as swollen discs with surface invagination. In dodecylsulfate and deoxycholate the morphological changes were almost the same. The cell initially deformed in shape to a spiculate disc and finally to a stretched-out flat form. The results are discussed according to the bilayer couple hypothesis. Also, in the prelytic stage, these detergents caused inhibition of the response of platelets to collagen and ADP-fibrinogen.  相似文献   

9.
Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box–Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.  相似文献   

10.
The extraction of nucleic acids from a given environment marks a crucial and essential starting point in any molecular investigation. Members of Halococcus spp. are known for their rigid cell walls, and are thus difficult to lyse and could potentially be overlooked in an environment. Furthermore, the lack of a suitable lysis method hinders subsequent molecular analysis. The effects of six different DNA extraction methods were tested on Halococcus hamelinensis, Halococcus saccharolyticus and Halobacterium salinarum NRC-1 as well as on an organic rich, highly carbonated sediment from stromatolites spiked with Halococcus hamelinensis. The methods tested were based on physical disruption (boiling and freeze/thawing), chemical lysis (Triton X-100, potassium ethyl xanthogenate (XS) buffer and CTAB) and on enzymatic lysis (lysozyme). Results showed that boiling and freeze/thawing had little effect on the lysis of both Halococcus strains. Methods based on chemical lysis (Triton X-100, XS-buffer, and CTAB) showed the best results, however, Triton X-100 treatment failed to produce visible DNA fragments. Using a combination of bead beating, chemical lysis with lysozyme, and thermal shock, lysis of cells was achieved however DNA was badly sheared. Lysis of cells and DNA extraction of samples from spiked sediment proved to be difficult, with the XS-buffer method indicating the best results. This study provides an evaluation of six commonly used methods of cell lysis and DNA extraction of Halococcus spp., and the suitability of the resulting DNA for molecular analysis.  相似文献   

11.
Receptors for thyrotropin-releasing hormone were solubilized by Triton X-100. Membrane fractions from GH3 pituitary tumor cells were incubated with thyrotropin-releasing hormone in order to saturate specific receptor sites before the addition of detergent. The amount of protein-bound hormone solubilized by Triton X-100 was proportional to the fractional saturation of specific membrane receptors. Increasing detergent: protein ratios from 0.5 to 20 led to a progressive loss of hormone · receptor complex from membrane fractions with a concomitant increase in soluble protein-bound hormone. The soluble hormone · receptor complex was not retained by 0.22 μm filters and remained soluble after ultracentrifugation. Following incubation with high (2.5–10%) concentration of Triton X-100 and other non-ionic detergents, or following repeated detergent extraction, at least 18% of specifically bound thyrotropin-releasing hormone remained associated with particulate material. Unlike the hormone receptor complex, the free hormone receptor was inactivated by Triton X-100. A 50% loss of binding activity was obtained with 0.01% Triton X-100, corresponding to a detergent: protein ratio of 0.033.The hormone · receptor complex was included in Sepharose 6B and exhibited an apparent Stokes radius of 46 Å in buffers containing Triton X-100. The complex aggregated in detergent-free buffers. Soluble hormone receptors were separated from excess detergent and thyrotropin-releasing hormone by chromatography on DEAE-cellulose. Thyrotropin-releasing hormone dissociated from soluble receptors with a half-time of 120 min at 0°c, while the membrane hormone · receptor complex was stable for up to 5 h at 0°C.  相似文献   

12.
Summary Then-acetyl-d-glucosamine-1-phosphate: dolichol phosphate transferase fromArtemia has been partially purified and characterized. The enzyme is solubilized from crude microsomes using Triton X-100, and after detergent removal appears to be associated with phospholipids. Using dolichol phosphate and UDP-n-acetyl-d-glucosamine as substrates, the enzyme catalyzes the formation of dolichol-pyrophosphate-n-acetyl-d-glucosamine. the product identity has been verified by TLC and paper chromatography following mild acid hydrolysis. Under the incubation conditions used only one product is made, i.e., Dol-p-p-GlcNAc. The formation of product is linear with increasing amounts of added protein and with time of incubation. The enzyme requires magnesium ions for activity. Activity of the enzyme is stimulated 6-fold by exogenous dolichol phosphate and is also stimulated by added phospholipids, with optimal activity being obtained in the presence of mixtures of phosphatidylcholine and phosphatidylglycerol. Enzymatic activity is not increased upon addition of GDP-mannose or dolichol phosphate mannose. The enzyme is rapidly inactivated by exposure to several detergents, including Triton X-100 and deoxycholate. The activity is inhibited by tunicamycin and by the purified B2 homologue of this antibiotic. Other antibiotic inhibitors such as diumycin and polyoxin D have little effect on the enzyme. Both the microsomal and solubilized enzyme preparations are inactivated by 70% upon treatment with phospholipase A2; activity may be restored by addition of phospholipids. Following hydrophobic interaction chromatography on Phenyl Sepharose, gel filtration chromatography on Sepharose CL-4B indicated that the enzyme, purified 81-fold, contained phophatidylcholine and phosphatidyl-ethanolamine.Abbreviations SDS sodium dodecyl sulfate - PMSF phenyl methanesulfonylfluoride - HEPES 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - GlcNAc N-acetyl-d-glucosamine - Dol-PP-GlcNAc dolichol pyrophosphate N-acetyl-d-glucosamine - Dol-P-man dolichol-phosphate-mannose - Dol-PP- (GlcNAc)2 dolichol-pyrophosphate-di-N- acetylchitobiose - DMSO dimethylsulfoxide - C:M (2:1) chloroform:methanol (2:1) - C:M:W (10:10:3) chloroform:methanol:water (10:10:3) - GlcNAc-1-P N-acetyl-d-glucosamine-1-phosphate - Dol-P dolichol phosphate - EGTA ethylene glycol bis (b-aminoethyl ether)-NNNN tetraacetic acid  相似文献   

13.
This report deals with total extraction and activation of soluble indoleacetic acid oxidase from Betula alleghaniensis leaves as affected by different buffers, varying pH, phenol binder, detergent, plus volume and time parameters. For all buffers and pH levels tested, only tris pH 8 gave a high activity. This result was not a pH effect, since a wide-range, citrate-phosphate buffer at pH 8 gave a very low activity. Addition of a neutral detergent, Triton X-100, to all buffers gave considerable activity in every case. Most activity with Triton X-100 occurred at pH 6 and least at pH 8 regardless of buffer composition. A phenol binder, polyvinylpyrollidone, increased activity also, but less than the detergent Triton X-100. Both of these compounds in combination gave an additive effect and the highest measure of enzyme activity. Further increases in measurable indoleacetic acid oxidase activity were obtained by using the best combination of these factors to determine the optium tissue: buffer ratio and optimum soaking time. Increases in activity of 70 and 60%, respectively, were achieved.  相似文献   

14.
A cross-linked form of the detergent Triton X-100, called Triton WR-1339, has been shown to reduce the spread of tumor cells in laboratory animals. However, some of these effects were controversial, probably due to the use of different tumor cell lines and varying sites of injection. In order to better understand these processes, we have used Triton X-100 and performed a molecular analysis of its growth-inhibitory function. Using the T24 bladder carcinoma cell line, we have shown that treatment of cells with this detergent caused a potent antiproliferative effect resulting from the downregulation of the key cell cycle regulators, the cyclin-dependent kinases (CDKs). CDK activity was lost due to a twofold effect, the increased expression of the CDK inhibitors p21Cip1 and p27Kip1 in combination with the reduced expression of cyclin A, a regulatory CDK subunit that is essential for CDK function. Taken together, our results provide a molecular basis for the antiproliferative effects of the Triton detergent, namely its differential effects on various parts of the cell cycle machinery.  相似文献   

15.
Cellular lysis of Streptococcus faecalis induced with triton X-100.   总被引:9,自引:5,他引:4       下载免费PDF全文
Lysis of exponential-phase cultures of Streptococcus faecalis ATCC 9790 was induced by exposure to both anionic (sodium dodecyl sulfate) and nonionic (Triton X-100) surfactants. Lysis in response to sodium dodecyl sulfate was effective only over a limited range of concentrations, whereas Triton X-100-induced lysis occurred over a broad range of surfactant concentrations. The data presented indicate that the bacteriolytic response of growing cells to Triton X-100: (i) was related to the ratio of surfactant to cells and not the surfactant concentration per se; (ii) required the expression of the cellular autolytic enzyme system; and (iii) was most likely due to an effect of the surfactant on components of the autolytic system that are associated with the cytoplasmic membrane. The possibility that Triton X-100 may induce cellular lysis by releasing a lipid inhibitor of the cellular autolytic enzyme is discussed.  相似文献   

16.
d-Glucose dehydrogenase purified from the membrane of Pseudomonas fluorescens was shown to be highly hydrophobic in amino acid analysis, with a polarity of 39.7%. The purified enzyme was inactivated upon removal of detergent by acetone treatment. The detergent-depleted enzyme was activated partially with Triton X-100, and the activity was restored almost completely upon addition of both phospholipids and Triton X-100, followed by sonication. The purified enzyme, in spite of being a single polypeptide dehydrogenase, directly reduced not only short-chain ubiquinone but also long-chain homologs. It should be noted that coenzyme Q-6 or Q-9 incorporated in phospholipid vesicles was efficiently reduced with the enzyme. These results show that, in the cytoplasmic membrane of Pseudomonas fluorescens, the glucose dehydrogenase may be linked to an electron transport chain via ubiquinone.  相似文献   

17.
The influence of different cultivation conditions on β-glucosidase production and of some parameters on the activity and stability of this enzyme were studied inNectria catalinensis. Maximal β-glucosidase production was achieved with ammonium nitrate (0.5 g N/L) as nitrogen source. Tween 80, Tween 20 and Triton X-100 increased β-glucosidase yields, Tween 80 was the most effective for enzyme release and growth at a concentration of 3.4 mmol/L. On the other hand, Tween 20 and Triton X-100 had an inhibitory effect onN. catalinensis growth. A temperature of 23°C and an initial pH of cultures of 6.5 were optimal for biomass and β-glucosidase production. Under optimal cultural conditions (ammonium nitrate, 0.5 g N/L; Tween 80, 3.4 mmol/L; 23°C; initial pH 6.5) the β-glucosidase yield was increased more than five fold respect to the initial state. Optimal temperature for β-glucosidase activity was 45°C, the initial activity dropped 60 % after 6 h of incubation at this temperature. Optimal pH for enzyme activity was 5.3. At this pH the β-glucosidase was completely stable after 3 d of incubation. TheV andK m values calculated from Lineweaver-Burk and Eadie-Hofstee plots were 0.23 μmol 4-nitrophenol per min per mg of protein and 0.25 mmol 4-nitrophenol β-d-glucopyranoside per L, respectively. The activation energy according to Arrhenius plot was 49.6 KJ/mol.  相似文献   

18.
A partially purified lipase produced by the thermophile Geobacillus thermoleovorans CCR11 was immobilized by adsorption on porous polypropylene (Accurel EP-100) in the presence and absence of 0.1% Triton X-100. Lipase production was induced in a 2.5% high oleic safflower oil medium and the enzyme was partially purified by diafiltration (co. 500,000 Da). Immobilization conditions were established at 25 °C, pH 6, and a protein concentration of 0.9 mg/mL in the presence and absence of 0.1% Triton X-100. Immobilization increased enzyme thermostability but there was no change in neither the optimum pH nor in pH resistance irrelevant to the presence of the detergent during immobilization. Immobilization with or without Triton X-100 allowed the reuse of the lipase preparation for 11 and 8 cycles, respectively. There was a significant difference between residual activity of immobilized and soluble enzyme after 36 days of storage at 4 °C (P < 0.05). With respect to chain length specificity, the immobilized lipase showed less activity over short chain esters than the soluble lipase. The immobilized lipase showed good resistance to desorption with phosphate buffer and NaCl; minor loses with detergents were observed (less than 50% with Triton X-100 and Tween-80), but activity was completely lost with SDS. Immobilization of G. thermoleovorans CCR11 lipase in porous polypropylene is a simple and easy method to obtain a biocatalyst with increased stability, improved performance, with the possibility for re-use, and therefore an interesting potential use in commercial conditions.  相似文献   

19.
Rhodobacter capsulatus strain 37b4 was grown diazotrophically in phototrophic chemostat culture with 30 mM of d,l-malate and 2 mM of ammonium. Illumination was varied at constant dilution rate (D) and vice versa, respectively. When D was raised from 0.035 to 0.165 h-1 at 30 klx, the steady state cell protein level as well as malate consumption decreased. d-malate was utilized only at D=0.035 h-1. Specific cellular activities of nitrogenase, as determined by acetylene reduction as well as by dinitrogen (N2) fixation, increased and approached constancy at D>0.075 h-1. Specific ATP contents of cells increased with increasing D, while specific ADP and AMP contents exhibited no significant variations. Consequently, energy charge values as well as molar ratios of ATP/ADP (T/D) increased. Raising illumination from 6 to 30 klx at D=0.075 h-1 resulted in an increase of the steady state protein level as well as of l-malate consumption. d-malate was not utilized under these conditions. Specific nitrogenase activity of cells increased at the lower and levelled off at the higher illuminations. Specific ATP contents of cells stayed constant but specific ADP contents increased with increasing illumination. The energy charge did not vary significantly, while the T/C ratio decreased between 6 and 18 klx and stayed constant at the higher illuminations. The results do not reveal any relationship between nitrogenase activity and the cellular levels or relative proportions of different adenine nucleotides. However, when steady state amounts of fixed N2 were plotted versus steady state T/D ratios, an inverse proportion became apparent, irrespective of the growth conditions employed. On the other hand, specific nitrogenase activity increased linearly when the rate of malate consumption increased. The results suggest that under steady state conditions the T/D ratio reflects the amount of ATP required to keep the amount of fixed N2 at a given level, while the rate at which nitrogenase functions depends on the rate at which the carbon and electron source, malate, is utilized by the organisms.  相似文献   

20.
Summary The effect of Triton X-100 on the activities of acid phosphatases from wheat germ, potato and human prostate was tested using -glycerophosphate, p-nitro-phenyl phosphate and naphthol AS BI phosphate as substrates. There was little effect on -glycerophosphatase activity at the concentrations of Triton X-100 tested. However at low concen trations of the detergent there was a stimulation of the activities of p-nitrophenyl phosphatase and naphthol phosphatase which were inhibited with the higher concentrations. Triton X-100 was found to enhance colour production between naphthol AS BI and fast red violet LB.Further evidence is presented confirming the presence of more than one acid phosphatase from each of the sources employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号