共查询到20条相似文献,搜索用时 0 毫秒
1.
Sensitive and selective determination of fluvoxamine maleate using a sensitive chemiluminescence system based on the alkaline permanganate–Rhodamine B–gold nanoparticles reaction 下载免费PDF全文
A high‐yield chemiluminescence (CL) system based on the alkaline permanganate–Rhodamine B reaction was developed for the sensitive determination of fluvoxamine maleate (Flu). Rhodamine B is oxidized by alkaline KMnO4 and a weak CL emission is produced. It was demonstrated that gold nanoparticles greatly enhance this CL emission due to their interaction with Rhodamine B molecules. It is also observed that sodium dodecyl sulfate, an anionic surfactant, can strongly increase this enhancement. In addition, it was demonstrated that a notable decrease in the CL intensity is observed in the presence of Flu. This may be related to Flu oxidation with KMnO4. There is a linear relationship between the decrease in CL intensity and the Flu concentration over a range of 2–300 µg/L. A new simple, rapid and sensitive CL method was developed for the determination of Flu with a detection limit (3s) of 1.35 µg/L. The proposed method was used for the determination of Flu in pharmaceutical and urine samples. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
2.
Potassium permanganate–acridine yellow chemiluminescence system for the determination of fluvoxamine,isoniazid and ceftriaxone 下载免费PDF全文
Based on the oxidation of acridine yellow by permanganate in basic medium, a new chemiluminescence system was developed for the sensitive determination of some important drugs. The remarkable inhibiting effect of fluvoxamine, ceftriaxone and isoniazid on this reaction was applied to their detection. A possible mechanism was proposed for this system based on chemiluminescence emission wavelengths and experimental observations. Under optimum conditions, calibration graphs were obtained for 1 × 10?9 to 1 × 10?6 mol/L of fluvoxamine; 2 × 10?8 to 8 × 10?6 mol/L of ceftriaxone and 5 × 10?8 to 4 × 10?5 mol/L of isoniazid. This proposed method was satisfactorily used in the determination of these drugs in pharmaceutical samples and human urine and serum. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
3.
A novel and highly sensitive chemiluminescence (CL) method for the determination of ethanol was developed based on the CdS quantum dots (QDs)–permanganate system. It was found that KMnO4 could directly oxidize CdS QDs in acidic media resulting in relatively high CL emission. A possible mechanism was proposed for this reaction based on UV/Vis absorption, fluorescence and the generated CL emission spectra. However, it was observed that ethanol had a remarkable inhibition effect on this system. This effect was exploited in the determination of ethanol within the concentration range 12–300 µg/L, with detection at 4.3 µg/L. In order to evaluate the capability of presented method, it was satisfactorily utilized in the determination of alcohol in real samples. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
A novel system of galangin–potassium permanganate–polyphosphoric acid for the determination of tryptophan and its chemiluminescence mechanism 下载免费PDF全文
A novel galangin–potassium permanganate (KMnO4)–polyphosphoric acid (PPA) system was found to have an outstanding response to tryptophan (Trp). Trp determination using this KMnO4–PPA system was enhanced significantly in the presence of galangin. A highly sensitive flow‐injection chemiluminescence (CL) method to determine Trp was developed based on the CL reaction of galangin–KMnO4–Trp in PPA media. The presence of galangin, a member of the flavonol class of flavonoid complexes, greatly increased the luminous intensity of Trp in KMnO4–PPA systems. Under optimized conditions, Trp was determined in the 0.05–10 µg/mL range, with a detection limit (3σ) of 5.0 × 10?3 µg/mL. The relative standard deviation (RSD) was 1.0% for 11 replicate determinations of 1.0 µg/mL Trp. Two synthetic samples were determined selectively with recoveries of 98.4–100.1% in the presence of other amino acids. The possible mechanism is summarized as follows: excited states of Mn(II)* and Mn(III * types are the main means of generating chemical luminescent species, and Trp concentration and luminescence intensity have a linear relationship, which enables quantitative analysis. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
5.
The chemiluminescence (CL) reaction of acyclovir (ACV)–potassium permanganate, with formaldehyde as an enhancer, was investigated by the flow‐injection system, and a new method is reported for the determination of ACV on the basis of the reaction. The method is rapid, effective and simple for the determination of acyclovir in the range 0.2–80 mg/L, with a limit of detection of 0.06 mg/L (3 S:N), a relative standard deviation (RSD) of 3.7% for the determination of 1.0 mg/L acyclovir solution in 11 repeated measurements. The method has been applied to the determination of acyclovir in pharmaceuticals, with satisfactory results. The possible reaction mechanism is also discussed briefly. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
《Luminescence》2005,20(1):20-24
It was found that amoxycillin can react with potassium permanganate in an acidic medium to produce chemiluminescence, which is greatly enhanced by formaldehyde. The optimum conditions for this chemiluminescent reaction were studied in detail using a flow‐injection system. The experimental results indicate that, under optimum conditions, the chemiluminescence intensity is linearly related to the concentration of amoxycillin in the range 5.48 × 10?8–2.74 × 10?6 mol[sol ]L, with a detection limit (3σ) of 4.1 × 10?8 mol[sol ]L. The relative standard deviation was 1.0% at 1.1 × 10?6 mol[sol ]L amoxycillin (n = 11 measurements). This method has the advantages of high sensitivity, fast response and ease of operation. The method was successfully applied to the determination of amoxycillin in raw medicines and capsules. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
7.
A novel chemiluminescence method for the determination of 6‐mercaptopurine was established based on 6‐mercaptopurine inhibition of the chemiluminescence emission of potassium permanganate–thioacetamide–sodium hexametaphosphate system. The peak height was proportional to log 6‐mercaptopurine concentration in the range 7.0 × 10?10 to 1.0 × 10?7 g/mL and the detection limit was 1.9 × 10?11 g/mL (S/N = 3). The relative standard deviation was 1.5% for the determination of 8.0 × 10?8 g/mL 6‐mercaptopurine (n = 11). The proposed sensor was successfully applied to the analysis of 6‐mercaptopurine in human serum samples. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
8.
Based on the catalytic activity of hemin, an efficient biocatalyst, an indirect capillary electrophoresis–chemiluminescence (CE‐CL) detection method for phenols using a hemin–luminol–hydrogen peroxide system was developed. Through a series of static injection experiments, hemin was found to perform best in a neutral solution rather than an acidic or alkaline medium. Although halide ions such as Br? and F? could further enhance the CL signal catalyzed by hemin, it is difficult to apply these conditions to this CE‐CL detection system because of the self‐polymerization of hemin, as it hinders the CE process. The addition of concentrated ammonium hydroxide to an aqueous/dimethyl sulfoxide solution of hemin–luminol afforded a stable CE‐CL baseline. The indirect CE‐CL detection of five phenols using this method gave the following limits of detections: 4.8 × 10?8 mol/L (o‐sec‐butylphenol), 4.9 × 10?8 mol/L (o‐cresol), 5.4 × 10?8 mol/L (m‐cresol), 5.3 × 10?8 mol/L (2,4‐dichlorophenol) and 7.1 × 10?8 mol/L (phenol). Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
A sensitive and simple chemiluminescent (CL) method for the determination of diclofenac sodium has been developed by combining the flow injection technique and its sensitizing effect on the weak CL reaction between formaldehyde and acidic potassium permanganate. A calibration curve is constructed for diclofenac sodium under optimized experimental parameters over the range 0.040–5.0 µg/mL and the limit of detection is 0.020 µg/mL (3σ). The inter‐assay relative standard deviation for 0.040 µg/mL diclofenac sodium (n = 11) is 2.0%. This method is rapid, sensitive, simple, and shows good selectivity and reproducibility. The proposed method has been successfully applied to the determination of the studied diclofenac sodium in pharmaceutical preparations with satisfactory results. Furthermore, the possible mechanism for the CL reaction has been discussed in detail on the basis of UV and CL spectra. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
10.
《Luminescence》2003,18(6):341-345
A chemiluminescence (CL) signal was observed when alkaline earth metal ion solution, Mg2+ or Ca2+ or Ba2+, was injected into a reaction mixture of fluorescein and potassium permanganate. A possible CL mechanism is proposed based upon the CL, fluorescence and UV‐visible spectra. Furthermore, the feasibility of the application of these reactions to the analysis of these alkaline earth metal ions was evaluated and the analytical parameters of the methods were determined. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
11.
A sensitive and simple chemiluminescent (CL) method for the determination of clomipramine has been developed by combining the flow‐injection analysis (FIA) technique, which is based on the CL intensity generated from the redox reaction of potassium permanganate (KMnO4)–formic acid in sulphuric acid (H2SO4) medium. Under the optimum conditions, the linear range for the determination of clomipramine was 0.04–4 µg/mL, with a correlation coefficient of 0.9988 (n = 10) and a detection limit of 0.008 µg/mL (3σ), and the relative standard deviation (RSD) for 2.0 µg/mL clomipramine (n = 11) is 1.26%. The proposed method has been successfully applied to the determination of the studied clomipramine in pharmaceutical preparations. The possible reaction mechanism is discussed. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
12.
A post‐chemiluminescence (PCL) phenomenon was observed when chloramphenicol was injected into a mixture of luminol and potassium periodate after the chemiluminescence (CL) reaction of luminol–potassium periodate had finished. The possible reaction mechanism was proposed based on studies of the CL kinetic characteristics, the CL spectra, the fluorescence spectra and the UV‐vis absorption spectra of the related substances. Based on the PCL reaction, a rapid and sensitive method for the determination of chloramphenicol was established. The linear response range was 6.0 × 10?7–1.0 × 10?5 mol/L, with a correlation coefficient of 0.9986. The relative standard deviation (RSD) for 5.0 × 10?6 mol/L chloramphenicol was 2.3% (n = 11). The detection limit was 1.6 × 10?7 mol/L. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
13.
Enhanced chemiluminescence of the fluorescein–KIO4 system by CdTe quantum dots for determination of catechol 下载免费PDF全文
In this paper, a novel chemiluminescence (CL) system was introduced based on the use of CdTe quantum dots (QDs) with the mixture solutions of fluorescein and potassium periodate (KIO4) in alkaline medium. The CL signal of an ultra‐weak system was strongly enhanced in the presence of QDs. The application of CdTe QDs–fluorescein–KIO4 system is reported for the first time. It was found that catechol had a diminishing effect on the CL reaction. Under optimal experimental conditions, CL intensity decreased linearly in a 1 to 100 μM catechol concentration range, with a 0.18 μM detection limit. A possible reaction mechanism was proposed according to the results of kinetic analyses, CL spectra, ultraviolet–visible and fluorescence spectra. The results pointed to an efficient energy transfer between the CL energy donor CdTe QDs and acceptor fluorescein. Finally, the CL method was successfully applied to the determination of catechol in environmental water samples. 相似文献
14.
Based on the inhibition effect of methimazole (MMI) on the reaction of luminol–H2O2 catalyzed by gold nanoparticles, a novel chemiluminescence (CL) method was developed for the determination of MMI. Under the optimum conditions, the relative CL intensity was linearly related to MMI concentration in the range from 5.0 × 10?8 to 5.0 × 10?5 mol L?1. The detection limit was 1.6 × 10?8 mol L?1 (S/N = 3), and the RSD for 6.0 × 10?6 mol L?1 MMI was 4.83 (n = 11). This method has high sensitivity, wide linear range, inexpensive instrumentation and has been applied to detect MMI in pharmaceutical tablets and pig serum samples. Furthermore, a possible reaction mechanism is discussed. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
15.
Shifeng Li Huimin Sun Dong Wang Jianguo Hong Shanjun Tao Haiyin Yu Xiuhua Wang Xianwen Wei 《Luminescence》2012,27(3):211-216
The oxidation reaction of luminol with AgNO3 can produce chemiluminescence (CL) in the presence of silver nanoparticles (NPs) in alkaline solution. Based on the studies of UV‐vis absorption spectra, photoluminescence (PL) spectra and CL spectra, a CL enhancement mechanism is proposed. The CL emission spectrum of the luminol–AgNO3–Ag NPs system indicated that the luminophore was still 3‐aminophthalate. On injection of silver nanoparticles into the mixture of luminol and AgNO3, they catalysed the reduction of AgNO3 by luminol. The product luminol radicals reacted with the dissolved oxygen, to produce a strong CL emission. As a result, the CL intensity was substantially increased. Moreover, the influences of 18 amino acids, e.g. cystine, tyrosine and asparagine, and 25 organic compounds, including gallic acid, tannic acid and hydroquinone, on the luminol–AgNO3–Ag NPs CL system were studied by a flow‐injection procedure, which led to an effective method for detecting these compounds. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
The chemiluminescence (CL) behaviour of the luminol–potassium periodate system enhanced by CdTe quantum dots capped with thioglycolic acid (TGA–CdTe QDs) was studied using kinetic experiments, CL spectra, UV–vis absorption spectra and fluorescence spectra. The production of oxygen‐containing reactant intermediates (O2?? and OH?) in the present CL system was verified by CL. The possible CL mechanism was discussed in detail. Furthermore, theophylline (THP) was determined based on its enhancement of the CL intensity of the CdTe QDs–luminol–potassium periodate system coupled with a flow‐injection technique. Under these optimized conditions, the linear range was found to be from 1.0 × 10?8 to 1.0 × 10?5 g/mL with a detection limit of 2.8 × 10?9 g/mL (3σ). The recoveries for the determination of THP in tablets were from 98.2 to 99.6%. 相似文献
17.
Chemiluminescence of off‐line and on‐line gold nanoparticle‐catalyzed luminol system in the presence of flavonoid 下载免费PDF全文
It was found that flavonoids could remarkably inhibit the chemiluminescence (CL) intensity of an off‐line gold nanoparticle (AuNP)‐catalyzed luminol–H2O2 CL system. By contrast, flavonoids enhanced the CL intensity of an on‐line AuNP‐catalyzed luminol–H2O2 CL system. In the off‐line system, the AuNPs were prepared beforehand, whereas in the on‐line system, AuNPs were produced by on‐line mixing of luminol prepared in a buffer solution of NaHCO3 ? Na2CO3 and HAuCl4 with no need for the preliminary preparation of AuNPs. The on‐line system had prominent advantages over the off‐line system, namely a lowering of the background noise and improvements in the stability of the CL system. The results show that differences in the signal suppression effect of flavonoids on the off‐line AuNP‐catalyzed CL system are influenced by the combined action of a free radical scavenging effect and occupy‐sites function; the latter was proved to be predominant using controlled experiments. Enhancement of the on‐line system was ascribed to the presence of flavonoids promoting the on‐line formation of AuNPs, which better catalyzed the luminol–H2O2 CL reaction, and the enhancement activity of the six flavonoids increased with the increase in reducibility. This work broadens the scope of practical applications of an AuNP‐catalyzed CL system. 相似文献
18.
A flow injection chemiluminescence (FI–CL) method was developed for the determination of cyanide (CN−) based on the recovered CL signal by Cu2+ inhibiting a glutathione (GSH)‐capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2, and addition of Cu2+ could cause significant CL inhibition of the CdTe QDs–H2O2 system. In the presence of CN−, Cu2+ can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n](n‐1)– species, and the CL signal of the CdTe QDs–H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs–H2O2 system were turned off and turned on by the addition of Cu2+ and CN−, respectively. Further, the results showed that among the tested ions, only CN− could recover the CL signal, which suggested that the CdTe QDs–H2O2–Cu2+ CL system had highly selectivity for CN−. Under optimum conditions, the CL intensity and the concentration of CN− show a good linear relationship in the range 0.0–650.0 ng/mL (R2 = 0.9996). The limit of detection for CN− was 6.0 ng/mL (3σ). This method has been applied to detect CN− in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
The present study reports a one‐step synthesis method for the preparation of cationic gold nanoclusters (Au NCs). Polyethyleneimine (PEI), a positively charged hyperbranched polyamine, was selected as the capping reagent. Glutathione showed a synergistic effect on the formation of the small size of cationic Au NCs. The prepared cationic Au NCs have a size less than 2 nm and carry a positive charge in solution with pH less than 11. The cationic PEI–Au NCs‐triggered luminol chemiluminescence (CL) reactions showed slow and intense CL profiles. The maximum CL intensity can be obtained within 10 min and the CL signal maintained almost the same within 30 min. A linear increase of CL intensity was observed in the presence of an increasing concentration of cationic Au NCs ranging from 0.030 μM to 15 μM. The linear response of the cationic Au NCs in the CL reaction and the glow‐type CL profile make the proposed CL reaction have broad application prospects in the field of biological analysis and CL imaging. 相似文献
20.
A novel flow injection chemiluminescence (CL) method for the determination of dihydralazine sulphate (DHZS) is described. The method is based on the CL produced during the oxidation of DHZS by acidic permanganate solution in the presence of rhodamine B. Rhodamine B is suggested as a fluorescing compound for the energy-transferred excitation. The CL emission allows quantitation of DHZS concentration in the range 5-800 ng/mL, with a detection limit of 1.9 ng/mL (3sigma). The experimental conditions for the CL reaction are optimized and the possible reaction mechanism is discussed. The method has been applied to the determination of DHZS in pharmaceutical preparations and compares well with the high performance liquid chromatography (HPLC) method. 相似文献