首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of dissolved fluoride supplied as NaF at up to 150 p.p.m. F? (7.9 mM) on growth, photosynthesis, dark respiration, enolase activity and fluoride uptake were determined for six phytoplankters: Synechococcus leopoliensis (Racib.) Komarek (Cyanophyta), Oscillatoria limnetica Lemmermann (Cyanophyta), Ankistrodesmus braunii Brun (Chlorophyta), Scenedesmus quadricauda (Turp.) Bréb. (Chlorophyta), Cyclotella meneghiniana Kützing (Bacillariophyta) and Stephanodiscus minutus Grun. ex Cleve et Moll (Bacillariophyta). Growth (determined by absorbance at 660 nm or by cell-numbers) was unaffected by fluoride at up to 50 p.p.m. (2.6 mM) in all algae except S. leopoliensis, in which growth ceased transiently followed by resumption of growth at reduced rate. These effects showed a threshold at ca. 25 p.p.m. (1.3 mM) F? and increased with increasing F? concentration above this threshold. Photosynthetic O2 evolution in the chlorophytes was unaffected by F? at up to 50 p.p.m., whereas in S. leopoliensis F? above ca. 25 p.p.m. caused a concentration-dependent inhibition of photosynthesis which was most pronounced at saturating irradiance. Dark O2 uptake was unaffected at up to 50 p.p.m. in chlorophytes but was stimulated in S. leopoliensis. Enolase in clarified cell-extracts of all six algae was inhibited by F?, with Ki values ranging from 27 to 319 μM. Fluorine (measured by proton-induced gamma-ray emission) could not be detected in chlorophytes exposed during growth to up to 50 p.p. m. F?, but was detected in S. leopoliensis, O. limnetica and C. meneghiniana. Fluorine associated with cells of these algae increased as the external F? concentration increased.  相似文献   

2.
Formation of Br? and, under certain conditions also F? ions has been observed in the radiation chemically induced one-electron reduction of the anesthetic halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in aqueous solutions. The initial step is the release of Br? and formation of the 2-chloro-1,1,1-trifluoroethyl radical. The latter can react via competing pathways including H-atom abstraction, addition of molecular oxygen and further reduction by an antioxidant. All of these three competitive routes lead to different product patterns. High yields of F? ions are observed under anaerobic conditions in the presence of antioxidants such as ascorbate, propylgallate, etc. The fluoride elimination is strongly pH-dependent and seems to occur in various steps after initiation through reduction of the (CF3CHCl) radical. The implication for biochemical studies on the metabolism of halothane under different oxygen concentrations is discussed.  相似文献   

3.
《Biophysical journal》2022,121(7):1336-1347
Fluoride channels (Flucs) export toxic F? from the cytoplasm. Crystallography and mutagenesis have identified several conserved residues crucial for fluoride transport, but the permeation mechanism at the molecular level has remained elusive. Herein, we have applied constant-pH molecular dynamics and free-energy-sampling methods to investigate fluoride permeation through a Fluc protein from Escherichia coli. We find that fluoride is facile to permeate in its charged form, i.e., F?, by traversing through a non-bonded network. The extraordinary F? selectivity is gained by the hydrogen-bonding capability of the central binding site and the Coulombic filter at the channel entrance. The F? permeation rate calculated using an electronically polarizable force field is significantly more accurate compared with the experimental value than that calculated using a more standard additive force field, suggesting an essential role for electronic polarization in the F?–Fluc interactions.  相似文献   

4.
Enolase in the presence of its physiological cofactor Mg2+ is inhibited by fluoride and phosphate ions in a strongly cooperative manner (Nowak, T, Maurer, P. Biochemistry 20:6901, 1981). The structure of the quaternary complex yeast enolase–Mg2+–F?–Pi has been determined by X-ray diffraction and refined to an R = 16.9% for those data with F/σ(F) ≥ 3 to 2.6 Å resolution with a good geometry of the model. The movable loops of Pro-35-Ala-45, Val-153-Phe-lo9, and Asp-255-Asn-266 are in the closed conformation found previously in the precatalytic substrate–enzyme complex. Calculations of molecular electrostatic potential show that this conformation stabilizes binding of negatively charged ligands at the Mg2+ ion more strongly than the open conformation observed in the native enolase. This closed conformation is complementary to the transition state, which also has a negatively charged ion, hydroxide, at Mg2+. The synergism of inhibition by F? and Pi most probably is due to the requirement of Pi, for the closed conformation. It is possible that other Mg2+-dependent enzymes that have OH? ions bound to the metalion in the transition state also will be inhibited by fluoride ions. © Wiley-Liss, Inc.  相似文献   

5.
Two experiments have been carried out, each on 18 (male) rabbits of the New Zealand breed. In each of them, animals were divided into three groups of six: control group, cholesterol group (CH), and cholesterol + fluoride group (CH+F). Experimental hypercholesterolemia has been induced in the animals with the diet enriched with 0.5 and 2 g% of cholesterol/100 g of fodder/24 h. The rabbits from CH+F groups have also been administered fluoride ions contained in drinking water (3 mg F?/kg of body mass/24 h). The influence of fluoride ions upon the concentrations of malondialdehyde (MDA) and activity of antioxidative enzymes, superoxide dismutase (SOD), mitochondrial enzyme (MnSOD), cytoplasmatic enzyme (ZnCuSOD), and glutathione peroxidase (GPX), has been examined in liver of rabbits. An increase (in comparison with cholesterol groups) in the concentration of MDA in both (CH+F) groups in rabbit liver has been noted. Moreover, a decrease (statistically significant) of SOD and MnSOD has been found in cholesterol groups, as well as in groups (CH+F) in comparison with control group. Furthermore, a decrease in the activity of SOD under the influence of F? together with increased activity of MnSOD (statistically significant in comparison with cholesterol groups) have been observed. The activity of ZnCuSOD increased in statistically significant manner in (CH) groups vs control group and decreased (statistically significantly in relation to cholesterol groups) under the influence of F?.  相似文献   

6.
High-arsenic groundwater in inland basins usually contains high concentrations of fluoride. In the present study, the effects of fluoride on arsenic uptake by Pteris vittata and on arsenic transformation in growth media were investigated under greenhouse conditions. After P. vittata was hydroponically exposed to 66.8 μM As (V) in the presence of 1.05 mM F? in the form of NaF, KF, or NaF+KF for 10 d, no visible toxicity symptoms were observed, and there were not significant differences in the dry biomass among the four treatments. The results showed that P. vittata tolerated F? concentrations as high as 1.05 mM but did not accumulate fluoride in their own tissues. Arsenic uptake was inhibited in the presence of 1.05 mM F?. However, in hydroponic batches with 60 μM As (III) or 65 μM As (V), it was found that 210.6 and 316.0 μM F? promoted arsenic uptake. As(III) was oxidized to As(V) in the growth media in the presence and absence of plants, and F? had no effect on the rate of As(III) transformation. These experiments demonstrated that P. vittata was a good candidate to remediate arsenic-contaminated groundwater in the presence of fluoride. Our results can be used to develop strategies to remediate As-F-contaminated water using P. vittata.  相似文献   

7.
In this work, 4‐(p ‐hydroxybenzylidenehydrazino)‐N ‐butyl‐1,8‐naphthalimide ( 1 ) has been designed and synthesized as a colorimetric and fluorescent dual‐modal probe for F?. Compound 1 immediately detected inorganic fluoride salts using UV /v is absorption and fluorescence spectroscopy methods, and served as a ‘naked‐eye’ indicator for F? with high selectivity and sensitivity. Both the absorption and fluorescence spectra show excellent linearity with the concentration of F?. Real‐life applications demonstrated that our proposed analytical system provided a satisfactory method for the determination of F?. In addition, the reaction mechanism of deprotonation was confirmed by 1H NMR.  相似文献   

8.
Assessment of exposure to fluoride (F?) is increasingly focused on mineralized tissues, mainly bones. Their periodic growth and continuous reconstruction make them a good material for studying long-term F? accumulation. In this study, F?concentrations were determined in the bones of foxes and raccoon dogs from north-western Poland and relationships between bone F? and the age categories of the animals were attempted to be identified. Bone samples were collected from femurs of 32 foxes (15 males and 17 females) and 18 raccoon dogs (10 males and 8 females) from polluted, medium-polluted, and unpolluted by F? areas. Bone F? was determined by potentiometric method, and results were expressed per dry weight (dw); they ranged from 176 to 3,668 mg/kg dw in foxes and from 84 to 1,190 mg/kg dw in raccoon dogs. Foxes from north-western Poland accumulated much more F? in their bones than raccoon dogs. Our study shows that the assessment of hazards created by industrial emitters can be conducted conveniently by the measurements of fluorine content in hard tissues of wild animals. Due to availability of such type of material for studies, it seems that the analysis of fluoride content in bones can be a good tool in the development of ecotoxicology.  相似文献   

9.
A new rhodamine–ethylenediamine–nitrothiourea conjugate (RT) was synthesized and its sensing property as a fluorescent chemodosimeter toward metal ions was explored in water media. Analytical results from absorption and fluorescence spectra revealed that the addition of Hg2+ ions to the aqueous solution of the chemodosimeter RT caused a distinct fluorescence OFF–ON response with a remarkable visual color change from colorless to pink; however, no clear spectral and color changes were observed from other metal ions including: Zn2+, Cu2+, Cd2+, Pb2+, Ag+, Fe2+, Cr3+, Co3+, Ni2+, Ca2+, Mg2+, K+ and Na+. The sensing results and the molecular structure suggested that a Hg2+‐induced a desulfurization reaction and cyclic guanylation of the thiourea moiety followed by ring‐opening of the rhodamine spirolactam in RT are responsible for a distinct fluorescence turn‐on signal, indicating that RT is a remarkably sensitive and selective chemodosimeter for Hg2+ ions in aqueous solution. Hg2+ within a concentration range from 0.1 to 25 μM can be determined using RT as a chemodosimeter and a detection limit of 0.04 μM is achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Finding appropriate adsorbent may improve the quality of drinking water in those regions where arsenic (As) and fluoride (F?) are present in geological formations. In this study, we evaluated the efficiency of potato peel and rice husk ash (PPRH-ash)-derived adsorbent for the removal of As and F from contaminated water. Evaluation was done in batch adsorption experiments, and the effect of pH, initial adsorbate concentration, contact time, and adsorbent dose were studied. Characteristics of adsorbents were analyzed using scanning electron micropcope (SEM) and Fourier transform infrared (FTIR) spectroscopy. Both the Langmuir and Freundlich isotherm models fitted well for F? and As sorption process. The maximum adsorption capacity of adsorbent for As and F? was 2.17 μg g?1 and 2.91 mg g?1, respectively. The As and Fi removal was observed between pH 7 and 9. The sorption process was well explained with pseudo-second order kinetic model. Arsenic adsorption was not decreased in the presence of carbonate and sulfate. Results from this study demonstrated potential utility of this agricultural biowaste, which could be developed into a viable filtration technology for As and F? removal in As- and F-contaminated water streams.  相似文献   

11.
Polyvinyl pyrrolidone (PVP) crowned chrysene nanoparticles (CHYNPs) were prepared by using a reprecipitation method. Dynamic light scattering (DLS) and scanning electron microscope (SEM) studies indicate that the monodispersed spherical nanoparticles bear a negative charge on their surfaces. The bathochromic spectral shift in the UV–visible and fluorescence spectrum of CHYNPs from chrysene (CHY) in acetone solution supports the J‐ type aggregation of nanoparticles. The aggregation‐induced enhanced emission of CHYNPs at 486 and 522 nm decreases by increasing the concentration of the Ca2+ ion solution. It can display an ON–OFF type fluorescence response with high selectivity towards Ca2+ ions aqueous medium. Furthermore, the in situ generated PVP–CHYNPs–Ca2+ ensemble could recover the quenched fluorescence upon the addition of fluoride anions resulting in an OFF–ON type sensor. The present method has a correlation coefficient R2 = 0.988 with a detection limit of 1.22 μg/mL for Ca2+ in the aqueous medium. The fluorescence changes of PVP crowned CHYNPs upon the addition of Ca2+ and F? can be utilized as an INHIBIT logic gate at the molecular level, using Ca2+ and F? chemical inputs and the fluorescence intensity signal as output.  相似文献   

12.
Here, the synthesis and luminescence analysis of the Tb3+-activated phosphor were reported. The CaY2O4 phosphors were synthesized using a modified solid-state reaction method with a variable doping concentration of Tb3+ ion (0.1–2.5 mol%). As synthesized, the phosphor was characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis techniques for the optimized concentration of doping ions. The prepared phosphor showed a cubic structure, and FTIR analysis confirmed functional group analysis. It was discovered that the intensity of 1.5 mol% was higher than at other concentrations after the photoluminescence (PL) excitation and emission spectra were recorded for different concentrations of doping ions. The excitation was monitored at 542 nm, and the emission was monitored at 237 nm. At 237 nm excitation, the emission peaks were found at 620 nm (5D47F3), 582 nm (5D47F4), 542 nm (5D47F5), and 484 nm (5D47F6). The 1931 CIE (x, y) chromaticity coordinates showed the distribution of the spectral region calculated from the PL emission spectra. The values of (x = 0.34 and y = 0.60) were very close to dark green emission. Therefore, the produced phosphor would be very useful for light-emitting diode (green component) applications. Thermoluminescence glow curve analysis for various concentrations of doping ions and various ultraviolet (UV) exposure times was carried out, and a single broad peak was found at 252°C. The computerized glow curve deconvolution method was used to obtain the related kinetic parameters. The prepared phosphor exhibited an excellent response to UV dose and could be useful for UV ray dosimetry.  相似文献   

13.
Urine is an ideal source of materials to search for potential disease‐related biomarkers as it is produced by the affected tissues and can be easily obtained by noninvasive methods. 2‐DE‐based proteomic approach was used to better understand the molecular mechanisms of injury induced by fluoride (F?) and define potential biomarkers of dental fluorosis. Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F? for 60 days (n = 15/group). During the experimental period, the animals were kept individually in metabolic cages, to analyze the water and food consumption, as well as fecal and urinary F? excretion. Urinary proteome profiles were examined using 2‐DE and Colloidal Coomassie Brilliant Blue staining. A dose‐response regarding F? intake and excretion was detected. Quantitative intensity analysis revealed 8, 11, and 8 significantly altered proteins between control vs. 5 ppm F?, control vs. 50 ppm F? and 5 ppm F? vs. 50 ppm F? groups, respectively. Two proteins regulated by androgens (androgen‐regulated 20‐KDa protein and α‐2μ‐globulin) and one related to detoxification (aflatoxin‐B1‐aldehyde‐reductase) were identified by MALDI‐TOF‐TOF MS/MS. Thus, proteomic analysis can help to better understand the mechanisms underlying F? toxicity, even in low doses. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:8–14 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20353  相似文献   

14.
15.
Bone deformation and fragility are common signs of skeletal fluorosis. Disorganisation of bone tissue and presence of inflammatory foci were observed after fluoride (F?) administration. Most information about F? effects on bone has been obtained in adult individuals. However, in fluorosis areas, children are a population very exposed to F? and prone to develop not only dental but also skeletal fluoroses. The aim of this work was to evaluate the bone parameters responsible for the effect of different doses of F? on fracture load of the trabecular and cortical bones using multivariate analysis in growing rats. Twenty-four 21-day-old Sprague-Dawley rats were divided into four groups: F0, F20, F40 and F80, which received orally 0, 20, 40 or 80 μmol F?/100 g bw/day, respectively, for 30 days. After treatment, tibiae were used for measuring bone histomorphometric and connectivity parameters, bone mineral density (BMD) and bone cortical parameters. The femurs were used for biomechanical tests and bone F? content. Trabecular bone volume was significantly decreased by F?. Consistently, we observed a significant decrease in fracture load and Young’s modulus (YM) of the trabecular bone in F?-treated groups. However, cortical bone parameters were not significantly affected by F?. Moreover, there were no significant differences in cortical nor trabecular BMD. Multivariate analysis revealed a significant correlation between the trabecular fracture load and YM but not with bone volume or BMD. It is concluded that when F? is administered as a single daily dose, it produces significant decrease in trabecular bone strength by changing the elasticity of the trabecular bone.  相似文献   

16.
Rare earth ions (Eu3+ or Tb3+)‐activated Ca3 Ga2 Si3O12 (CaGaSi) phosphors were synthesized by using a sol–gel method. Photoluminescence spectra of Eu3+:CaGaSi phosphors exhibited five emission bands at 578, 592, 612, 652 and 701 nm, which were assigned to the transitions (5D07F0, 7F1, 7F2, 7F3 and 7F4), respectively, with an excitation wavelength of λexci = 392 nm. Among these, the transition 5D07F2 (612 nm) displayed bright red emission. In the case of Tb3+:CaGaSi phosphors, four emission bands were observed at 488 (5D47F6), 543 (5D47F5), 584 (5D47F4) and 614 nm (5D47F3) from the measurement of PL spectra with λexci = 376 nm. Among these, the transition 5D47F5 at 543 nm displayed bright green emission. The structure and morphology of the phosphors were studied from the measurements of X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy‐dispersive X‐ray analysis (EDAX) results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
We developed a new chromogenic and fluorescent ‘turn‐on’ chemodosimeter 1 based on a F‐triggered cascade reaction. This system displayed significant changes in UV/vis absorption and fluorescence emission intensities selectively for F over other anions in a mixture of CH3CN/H2O (95 : 5, v/v) and in acetonitrile. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of the study was examining the effect of fluoride ions and caffeine administration on glucose and urea concentration in blood serum and the activity of protein metabolism enzymes and selected enzymes of the urea cycle in rat liver. The study was carried out using 18 male Sprague-Daowley rats (4.5 mo old). Rats were divided into three groups. Group I received distilled water ad libitum. Group II received 4.9 mg F/kg body mass/d of sodium fluoride in the water, and group III received sodium fluoride (in the above-mentioned dose) and 3 mg/kg body mass/d of caffeine in the water. After 50 d, the rats were anesthetized with thiopental and fluoride ions, glucose, and urea concentration in blood serum were determined. Also determined were the activities of aspartate aminotransferase, alanine aminotransferase glutamate dehydrogenase, ornithine carbamoylotransferase and arginase in liver homogenates. Liver was taken for pathomorphological examinations. The applied doses of F (4.9 mg/kg body mass/d) and F+ caffeine (4.9 mg F/kg body mass/d+3 mg caffeine/kg body mass/d) resulted in a statistically significant increase of fluoride ion concentration in blood serum, a slight increase of the glucose concentration, and no changes in the concentration of urea in blood serum. This might testify to the absence of kidney lesions for the applied concentrations of F. No change in the functioning of hepatocytes was observed; however, slight disturbances have been noted in the functioning of the liver, connected with the activation of urea cycle, increase of arginase activity, and accumulation of F in this organ. There was no observed significant influence of caffeine supplementation on the obtained results.  相似文献   

19.
Fluoride and carbonate ions, which are present in the inorganic phase of bone, enamel, and dentine, are known to play an important and opposite role in the process of recrystallization. We have investigated the incorporation of fluoride and carbonate ions into hydroxyapatite structure under conditions of cyclic pH fluctuation and the effect of these incorporations on the conversion of hydroxyapatite into β-tricalcium phosphate after heat treatment. Fluoro-hydroxyapatite has been obtained as unique crystalline phase up to 20 fluoride at. %. The degree of substitution of fluoride for hydroxyl does not depend on the extent of carbonate incorporated into the apatite structure. On the other hand, the carbonate incorporation into the apatite structure seems to be hindered by the contemporary presence of fluoride. Both fluoride and carbonate exhibit a stabilizing effect on the apatite structure, as far as its conversion into β-tricalcium phosphate is concerned. The order of efficiency in stabilizing the apatite structure is F > F + CO32− > C032−.  相似文献   

20.
A colorimetric receptor L was prepared. Receptor L can selectively sense F? based on distinct color changes among a series of ions. It can selectively sense F? through an intramolecular hydrogen bond interaction. A Job plot indicated a 1:1 complexation stoichiometry between receptor L and F?. The association constant for L –F? in CH3CN was determined as 9.70 × 104 M?1 using a Stern–Volmer plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号