首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, the synthesis and luminescence analysis of the Tb3+-activated phosphor were reported. The CaY2O4 phosphors were synthesized using a modified solid-state reaction method with a variable doping concentration of Tb3+ ion (0.1–2.5 mol%). As synthesized, the phosphor was characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis techniques for the optimized concentration of doping ions. The prepared phosphor showed a cubic structure, and FTIR analysis confirmed functional group analysis. It was discovered that the intensity of 1.5 mol% was higher than at other concentrations after the photoluminescence (PL) excitation and emission spectra were recorded for different concentrations of doping ions. The excitation was monitored at 542 nm, and the emission was monitored at 237 nm. At 237 nm excitation, the emission peaks were found at 620 nm (5D47F3), 582 nm (5D47F4), 542 nm (5D47F5), and 484 nm (5D47F6). The 1931 CIE (x, y) chromaticity coordinates showed the distribution of the spectral region calculated from the PL emission spectra. The values of (x = 0.34 and y = 0.60) were very close to dark green emission. Therefore, the produced phosphor would be very useful for light-emitting diode (green component) applications. Thermoluminescence glow curve analysis for various concentrations of doping ions and various ultraviolet (UV) exposure times was carried out, and a single broad peak was found at 252°C. The computerized glow curve deconvolution method was used to obtain the related kinetic parameters. The prepared phosphor exhibited an excellent response to UV dose and could be useful for UV ray dosimetry.  相似文献   

2.
3.
This paper reports the synthesis and characterization of Er3+‐doped CeO2 phosphor with variable concentrations of erbium. The sample was synthesized using a solid‐state reaction method, which is useful for the large‐scale production of phosphors and is also eco‐friendly. The prepared sample was characterized using an X‐ray diffraction (XRD) technique. The XRD pattern confirmed that sample has the pure cubic fluorite crystal structure of CeO2. The crystallite size of the prepared phosphor was determined by Scherer's formula and the crystallite size giving an intense XRD peak is 40.06 nm. The surface morphology of the phosphor was determined by field emission gun scanning electron microscopy (FEGSEM). From the FEGSEM image, good surface morphology with some agglomerates was found. The functional group in the prepared sample was analysed by Fourier transform infrared (FTIR) spectroscopy. All samples prepared with variable concentrations of Er3+ (0.1–2 mol%) were studied by photoluminescence analysis and it was found that the excitation spectra of the prepared phosphor shows broad excitation centred at 251 nm. Emission spectra at different concentrations of Er3+ show strong peaks at 413 and 470 nm and a weaker peak at 594 nm. The dominant peaks at 413 and 470 nm are caused by the allowed electronic transition 4S3/24I15/2 and the weaker transition at 594 nm is due to the transition 4 F9/24I15/2. Spectrophotometric determinations of peaks were evaluated using the Commission Internationale de I'Eclairage (CIE) technique. The emission spectra were also observed using an infrared (IR) laser 980 nm source, and three distinct peaks were found in the IR region at 848, 870 and 980 nm. The prepared phosphor has utility for application in display devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The antimonate compound La3SbO7 has high chemical stability, lattice stiffness and thermal stability. Orange–red‐emitting antimonate‐based phosphors La3SbO7:xSm3+ (x = 0.02, 0.05, 0.08, 0.10, 0.15, 0.20 and 0.25) were synthesized. The phase structure and photoluminescence properties of these phosphors were investigated. The emission spectrum obtained on excitation at 407 nm contained exclusively the characteristic emissions of Sm3+ at 568, 608, 654 and 716 nm, which correspond to the transitions from 4G5/2 to 6H5/2, 6H7/2, 6H9/2 and 6H11/2 of Sm3+, respectively. The strongest emission was located at 608 nm due to the 4G5/26H7/2 transition of Sm3+, generating bright orange–red light. The critical quenching concentration of Sm3+ in La3SbO7:Sm3+ phosphor was determined as 10% and the energy transfer between Sm3+ was found to be through an exchange interaction. The International Commission on Illumination chromaticity coordinates of the La3SbO7:0.10Sm3+ phosphors are located in the orange–red region. The La3SbO7:Sm3+ phosphors may be potentially used as red phosphors for white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, the thermoluminescence (TL) characteristics of Ag‐doped and undoped lithium tetraborate (Li2B4O7, LTB) materials, grown using the Czochralski method, were reported. The TL properties of LTB:Ag, such as glow curve structure, dose response, fading and reproducibility, were investigated. The glow curve of the Li2B4O7:Ag single crystal consists of four peaks located at approximately 75, 130, 190 and 275°C; in undoped LTB, the single crystal shows a broad glow curve with peaks at 65, 90, 125, 160 and 190°C using a heating rate of 5°C/s in the 50–350°C temperature region. The high temperature peak of Ag‐doped sample at 275°C has a nonlinear dose response within the range from 33 mGy to 9 Gy. There is a linear response in the range of 33–800 mGy; after which, a sublinear region appears up to 9 Gy for Ag‐doped LTB single crystal. For undoped single crystal, the dose response is supralinear for low doses and linear for the region between 1 and 9 Gy. The thermal fading ratio of the undoped material is almost 60% for the high temperature peak after 7 days. Ag‐doped LTB single crystal exhibits different behaviour over a period of 7 days.  相似文献   

6.
In the present article we report europium‐doped strontium ortho‐silicates, namely Sr2SiO4:xEu3+ (x = 1.0, 1.5, 2.0, 2.5 or 3.0 mol%) phosphors, prepared by solid state reaction method. The crystal structures of the sintered phosphors were consistent with orthorhombic crystallography with a Pmna space group. The chemical compositions of the sintered phosphors were confirmed by energy dispersive X‐ray spectroscopy (EDS). Thermoluminescence (TL) kinetic parameters such as activation energy, order of kinetics and frequency factors were calculated by the peak shape method. Orange‐red emission originating from the 5D07FJ (J = 0, 1, 2, 3) transitions of Eu3+ ions could clearly be observed after samples were excited at 395 nm. The combination of these emissions constituted orange‐red light as indicated on the Commission Internationale de l'Eclairage (CIE) chromaticity diagram. Mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increasing impact velocity of the moving piston that suggests that these phosphors can also be used as sensors to detect the stress of an object. Thus, the present investigation indicates that the piezo‐electricity was responsible for producing ML in the prepared phosphor.  相似文献   

7.
Rare‐earth ions play an important role in eco‐friendly solid‐state lighting for the lighting industry. In the present study we were interested in Eu3+ ion‐doped inorganic phosphors for near ultraviolet (UV) excited light‐emitting diode (LED) applications. Eu3+ ion‐activated SrYAl3O7 phosphors were prepared using a solution combustion route at 550°C. Photoluminescence characterization of SrYAl3O7:Eu3+ phosphors showed a 612 nm emission peak in the red region of the spectrum due to the 5D07F2 transition of Eu3+ ions under excitation at 395 nm in the near‐UV region and at the 466 nm blue excitation wavelength. These red and blue emissions are supported for white light generation for LED lighting. Structure, bonding between each element of the sample and morphology of the sample were analysed using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), which showed that the samples were crystallized in a well known structure. The phosphor was irradiated with a 60Co‐γ (gamma) source at a dose rate of 7.2 kGy/h. Thermoluminescence (TL) studies of these Eu3+‐doped SrYAl3O7 phosphors were performed using a Nucleonix TL 1009I TL reader. Trapping parameters of this phosphor such as activation energy (E), order of kinetics (b) and frequency factor (s) were calculated using Chen's peak shape method, the initial rise method and Ilich's method.  相似文献   

8.
A series of Ce3+‐activated blue‐emitting phosphors BaY2Si3O10 (BYSO) was designed and synthesized by a conventional solid‐state method. Upon ultraviolet light (250–370 nm) excitation, the obtained phosphors showed an intense blue emission band centered at 400–427 nm depending on doping concentration, and corresponding to the 5d→4f transition of Ce3+. The effects of doping concentration on crystal structure, emitting color, photoluminescence and photoluminescence excitation spectra, as well as the concentration quenching mechanism were studied in detail. The optimal doping concentration of Ce3+ in this phosphor was demonstrated to be about 0.75% and the concentration quenching mechanism can be ascribed to electric dipole–dipole interactions with a critical distance of ~38 Å. These fine luminescence properties indicate that BYSO:Ce3+ may be a potential blue phosphor for full‐color ultra‐violet (UV) white light emitting diodes (WLEDs).  相似文献   

9.
Incorporating the Gd3+ rare earth ion in the LiCaBO3 host lattice resulted in narrow‐band UV‐B emission peaking at 315 nm, with excitation at 274 nm. The LiCaBO3:Gd3+ phosphor was synthesized via the solid‐state diffusion method. The structural, morphological and luminescence properties of this phosphor were characterized by X‐ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. Electron paramagnetic resonance (EPR) characterization of the as‐prepared phosphors is also reported here. XRD studies confirmed the crystal formation and phase purity of the prepared phosphors. A series of different dopant concentrations was synthesized and the concentration‐quenching effect was studied. Critical energy transfer distance between activator ions was determined and the mechanism governing the concentration quenching is also reported in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Here we report the synthesis and structural, morphological, and photoluminescence analysis of white‐ and blue‐light‐emitting Dy3+‐ and Tm3+‐doped Gd2Ti2O7 nanophosphors. Single‐phase cubic Gd2Ti2O7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy3+‐doped and ~50 nm for Tm3+‐doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy3+‐doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue‐light excitation. Intense blue light was obtained for Tm3+‐doped Gd2Ti2O7 under UV excitation suggesting that this material could be used as a blue phosphor.  相似文献   

11.
We report the synthesis and structural characterization of Er3+,Yb3+‐doped Gd2O3 phosphor. The sample was prepared using the conventional solid‐state reaction method, which is the most suitable method for large‐scale production. The prepared phosphor sample was characterized using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er3+ and Yb3+ were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light‐emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er3+ and Yb3+‐doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Cu(II) ion‐doped NaCaAlPO4F3 phosphor has been synthesized using a solid state reaction method. The prepared sample is characterized by powder X‐ray diffraction, scanning electron microscope, optical absorption, electron paramagnetic resonance photoluminescence and Fourier transform infrared spectroscopy techniques. The crystallite size evaluated from x‐ray diffraction data is in nanometers. Scanning electron microscopy micrographs showed the presence of several irregular shaped particles. From optical absorption and electron paramagnetic resonance spectral data the doped Cu(II) ions are ascribed to distorted octahedral site symmetry. The synthesized phosphor exhibits emission bands in ultraviolet, blue and green regions under the excitation wavelength of 335 nm. The CIE chromaticity coordinates (x = 0.159, y = 0.204) also calculated for the prepared sample from the emission spectrum. The Fourier transform infrared spectroscopy spectrum revealed the characteristic vibrational bands of the prepared phosphor material. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
We have synthesized and characterized a new BaCa2Al8O15:Eu2+,Dy3+ phosphor prepared by the combustion method. X‐ray diffraction, thermoluminescence, scanning electron microscope, time decay and optical spectral analysis photoluminescence excitation, emission spectra were used to characterize the phosphors. Broadband ultraviolet excited luminescence of the BaCa2Al8O15:Eu2+,Dy3+ was observed in the blue region (λmax = 435 nm) due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. Scanning electron microscopy has been used for exploring the morphological properties of the prepared phosphors. The BaCa2Al8O15:Eu2+ phosphor has a blue afterglow when Dy3+ ions were co‐doped. The thermoluminescence spectra show that the Dy3+ ion induces a proper trap in the phosphor with a depth of 0.67 eV and results in a long afterglow phosphorescence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, we studied the luminescence properties of Tb3+‐doped MgPbAl10O17 green phosphor. To understand the excitation mechanism and corresponding emission of the prepared phosphor, its structural, morphological and photoluminescence properties were investigated. In general, for green emission, Tb3 is used as an activator and the obtained excitation and emission spectra indicated that this phosphor can be effectively excited by a wavelength of 380 nm, and exhibits bright green emission centered at 545 nm corresponding to the f → f transition of trivalent terbium ions. The chromaticity coordinates were (Cx = 0.263, Cy = 0.723). The impact of Tb3+ concentration on the relative emission intensity was investigated, and the best doping concentration was found to be 2 mol%. This study suggests that Tb3+‐doped MgPbAl10O17 phosphor is a strong candidate for a green component in phosphor‐converted white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Europium (Eu3+) and bismuth (Bi3+) co‐activated LiBaBO3 powder phosphors were synthesized by a solid‐state reaction and the structure, particle morphology, optical and photoluminescent properties were investigated. X‐Ray diffraction patterns of the LiBaBO3 phosphors crystallized in a pure monoclinic phase, i.e. there were no secondary phases due to either incidental impurities or undecomposed starting materials. Scanning electron microscopy images showed that the powders were made up of fluffy needle‐like particles that were randomly aligned. The band‐gap of the LiBaBO3 host was estimated to be 3.33 eV from the UV/vis absorption data. Blue emission was observed from the LiBaBO3 host, which is ascribed to self‐activation of the host matrix. In addition, greenish‐blue (493 nm) and red (613 nm) emissions were observed from europium‐doped samples and were attributed to the emissions of Eu2+ and Eu3+, respectively. Furthermore, after codoping with Bi3+, the emission intensity of Eu3+ located at 613 nm was significantly enhanced. From the Commission Internationale de I′Eclairage (CIE) color coordinates, white emission was observed from LiBa1–xBO3:xEu3+ (x = 0.020 and 0.025) phosphor powders with color coordinates of x = 0.368, y = 0.378 and x = 0.376, y = 0.366, respectively.  相似文献   

16.
Thermoluminescence (TL) materials are widely used in radiation measurements. The best‐known applications of TL materials are in the dosimetry of ionizing radiation, and in CTV screen phosphors, scintillators, X‐ray laser materials, etc. The TL glow curve and its kinetic parameters for annealed LaPO4 at different constant temperatures and for Dy3+‐doped LaPO4 phosphors irradiated by gamma‐rays are reported here. The samples were irradiated using a 60Co gamma‐ray source at a dose of 10 Gy and the heating rate used for TL measurements was 5ºC/s. The samples were characterized using X‐ray diffraction (XRD), Fourier transform infrared, transmission electron microscopy and TL techniques. The XRD pattern shows that the prepared phosphor has a good crystalline structure with an average crystallite size of ~ 18 nm. The samples show good TL peaks for 0.05, 0.1 and 0.2 mole % doping concentrations of Dy3+ ions and anneal above 400ºC. The TL glow curve characteristics of annealed LaPO4 and Dy3+‐doped LaPO4 were analyzed and trapping parameters calculated using various methods. All TL glow curves obey the second‐order kinetics with a single glow peak, which reveals that only one set of trapping parameter is set for a particular temperature. The TL sensitivity was found to depend upon the annealing temperature and Dy3+ doping concentration. The prepared sample may be a new nano phosphor and be useful in TL dosimetry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, Li6Y1–xEux(BO3)3 phosphor was successfully synthesized using a modified solid‐state diffusion method. The Eu3+ ion concentration was varied at 0.05, 0.1, 0.2, 0.5 and 1 mol%. The phosphor was characterized for phase purity, morphology, luminescent properties and molecular transmission at room temperature. The XRD pattern suggests a result closely matching the standard JCPDS file (#80‐0843). The emission and excitation spectra were followed to discover the luminescence traits. The excitation spectra indicate that the current phosphor can be efficiently excited at 395 nm and at 466 nm (blue light) to give emission at 595 and 614 nm due to the 5D07Fj transition of Eu3+ ions. Concentration quenching was observed at 0.5 mol% Eu3+ in the Li6Y1–xEux(BO3)3 host lattice. Strong red emission with CIE chromaticity coordinates of phosphor is x = 0.63 and y = 0.36 achieved with dominant red emission at 614 nm the 5D07 F2 electric dipole transition of Eu3+ ions. The novel Li6Y1–xEux(BO3)3 phosphor may be a suitable red‐emitting component for solid‐state lighting using double‐excited wavelengths, i.e. near‐UV at 395 nm and blue light at 466 nm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Thermoluminescence characteristics of Dy3+‐activated Mg5(BO3)3F low Zeff phosphor are described. The Mg5(BO3)3F phosphor doped with Dy3+ as activator was prepared by the modified solid‐state reaction. Formation of the compound was confirmed by use of X‐ray powder diffraction. The X‐ray powder diffraction pattern of the as‐prepared compound shows a good match with the available JCPDS data. The γ‐irradiated Mg5(BO3)3F:Dy3+ phosphor shows a simple glow curve peaking at about 148°C indicating that only one type of trap is being activated within a particular temperature range. The kinetic parameters, including activation energy and frequency factor were determined using Chen's method. The activation energy and frequency factors were 0.75 eV and 4.508 × 109/s respectively. The Zeff of Mg5(BO3)3F:Dy3+ phosphor was 9.84. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
CaS:Ce3+ is an efficient green‐emitting (535 nm) phosphor, excitable with blue light (450–470 nm) and was synthesized via a solid‐state reaction method by heating under a reducing atmosphere. The luminescent properties, photoluminescent (PL) excitation and emission of the phosphor were analyzed by spectrofluorophotometry. The excitation and emission peaks of the CaS:Ce3+ phosphor lay in the visible region, which made them relevant for light‐emitting diode (LED) application for the generation of white light. Judd‐Oflet parameters were calculated and revealed that green light emitted upon blue illumination. The prepared phosphor had strong blue absorption at 470 nm and a broad green emission band range from 490–590 nm with the peak at 537 nm. The characteristics of the CaS:Ce3+ phosphor make it suitable for use as a wavelength tunable green emitting phosphor for three band white LEDs pumped by a blue LED (470 nm). The Commission International de l'Eclairage co‐ordinates were calculated by a spectrophotometric method using the spectral energy distribution (0.304, 0.526) and confirm the green emission. The potential application of this phosphor is as a phosphor‐converted white light‐emitting diode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Li3PO4 phosphor was prepared using a modified solid‐state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic emission of Ce and Eu was observed. The lyoluminescence glow curves of Li3PO4 microcrystals show that lyoluminescence intensity initially increases with time and then decreases exponentially. The decay time consists of two components for all masses. The dependence of decay time, especially the longer component, on mass has been investigated. Experiments on γ‐irradiated crystals have proved that the light emission originates from the recombination of released F‐centres with trapped holes (V2‐centres) at the sulfuric acid–solid interface. Incorporation of bivalent alkali in solid lithium phosphate leads to an enhancement of lyoluminescence. A possible explanation for the experimental results has been attempted. The phosphor has a mechanoluminescence single glow peak. Mechanoluminescence intensity under various loading conditions was investigated. It is observed that mechanoluminescence intensity increases with increasing impurity concentration and increasing piston impact velocity. The results may be considered as only being of academic interest in solid‐state materials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号