首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the synthesis and characterization of Er3+‐doped CeO2 phosphor with variable concentrations of erbium. The sample was synthesized using a solid‐state reaction method, which is useful for the large‐scale production of phosphors and is also eco‐friendly. The prepared sample was characterized using an X‐ray diffraction (XRD) technique. The XRD pattern confirmed that sample has the pure cubic fluorite crystal structure of CeO2. The crystallite size of the prepared phosphor was determined by Scherer's formula and the crystallite size giving an intense XRD peak is 40.06 nm. The surface morphology of the phosphor was determined by field emission gun scanning electron microscopy (FEGSEM). From the FEGSEM image, good surface morphology with some agglomerates was found. The functional group in the prepared sample was analysed by Fourier transform infrared (FTIR) spectroscopy. All samples prepared with variable concentrations of Er3+ (0.1–2 mol%) were studied by photoluminescence analysis and it was found that the excitation spectra of the prepared phosphor shows broad excitation centred at 251 nm. Emission spectra at different concentrations of Er3+ show strong peaks at 413 and 470 nm and a weaker peak at 594 nm. The dominant peaks at 413 and 470 nm are caused by the allowed electronic transition 4S3/24I15/2 and the weaker transition at 594 nm is due to the transition 4 F9/24I15/2. Spectrophotometric determinations of peaks were evaluated using the Commission Internationale de I'Eclairage (CIE) technique. The emission spectra were also observed using an infrared (IR) laser 980 nm source, and three distinct peaks were found in the IR region at 848, 870 and 980 nm. The prepared phosphor has utility for application in display devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We report the synthesis and structural characterization of Er3+,Yb3+‐doped Gd2O3 phosphor. The sample was prepared using the conventional solid‐state reaction method, which is the most suitable method for large‐scale production. The prepared phosphor sample was characterized using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er3+ and Yb3+ were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light‐emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er3+ and Yb3+‐doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
An Er3+‐doped phosphor of Gd2O3 (Gd2O3:Er3+) was prepared using a conventional solid‐state reaction method. The structure and particle size were determined from X‐ray powder diffraction measurements. The average particle size of the phosphor was in between 20 and 50 nm. The particle size and structure of the phosphor were further confirmed by transmission electron microscopy (TEM) analysis. Luminescence spectra were recorded under excitation wavelengths of 275, 380, 515 and 980 nm. The visible upconversion and downconversion luminescence spectra of the Gd2O3:Er3+ phosphor were investigated as a function of Er3+ ion concentration. The upconverted emission at 980 nm excitation shows enhanced red emission with respect to green emission as the dopant concentration increased. Similar results were observed for downconversion emission under 275 and 380 nm excitation wavelengths. The mechanisms responsible for populating the 4S3/2 and 4 F9/2 levels, for green and red emissions, respectively, are different for different excitations and for different concentrations of Er3+. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Erbium‐doped nano‐sized Gd2O3 phosphor was prepared by a solution combustion method in the presence of urea as a fuel. The phosphor was characterized by X‐ray diffractometry (XRD), Fourier transform infra‐red spectroscopy, energy dispersive X‐ray analysis (EDX) and transmission electron microscopy (TEM). The results of the XRD shows that the phosphor has a monoclinic phase, which was further confirmed by the TEM results. Particle size was calculated by the Debye–Scherrer formula. The erbium‐doped Gd2O3 nanophosphor was revealed to have good down‐conversion (DC) properties and the intensity of phosphor could be modified by annealing. The effects of annealing at 900°C on the particle size and luminescence properties were studied and compared with freshly prepared Gd2O3:Er3+ nanoparticles. The average particle sizes were calculated as 8 and 20 nm for the freshly prepared samples and samples annealed at 900°C for 1 h, respectively. The results show that both freshly prepared and annealed Gd2O3:Er3+ have monoclinic structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Cerium (Ce3+)‐doped (1, 3, and 7 mol%) yttrium vanadate phosphors were prepared using a co‐precipitation technique. The structural and optical properties of the synthesized samples were studied using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), high‐resolution transmission electron microscopy (HR‐TEM), optical absorption, and photoluminescence (PL) spectroscopy techniques. The tetragonal structure and the formation of the nanosized crystallites in the YVO4:Ce phosphor were confirmed using XRD analysis. HR‐TEM morphology showed rod‐like nanoparticles of different sizes. Optical absorption spectra demonstrated strong absorption bands at 268 and 276 nm. PL spectra showed strong peaks at 546, 574, and 691 nm following excitation at 300 nm. The calculated CIE chromaticity coordinates demonstrated that YVO4:Ce could be used as a novel phosphor for the development of light‐emitting diode lamps.  相似文献   

7.
Dy3+-doped CaY2Al4SiO12 phosphors were prepared using the sol–gel method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy dispersive spectroscopy analyses (EDS) were used to analyse the crystal structure, morphology, and elemental composition of the prepared samples. The luminescence behaviour of the sample was investigated using photoluminescence (PL) and thermoluminescence (TL) techniques. The prepared CaY2Al4SiO12:xDy3+ phosphor showed a characteristic blue and yellow emission at ~480 and 583 nm, respectively, with an excitation wavelength of 350 nm. The most intense PL emission was found for a 4 mol% doping concentration of Dy3+ ions. The CIE diagram of the phosphor showed bluish-white colour emission. For TL studies, the prepared phosphors were irradiated with a 60Co γ (gamma) source and the TL glow curve of the CaY2Al4SiO12:0.04Dy3+ phosphor showed three overlapped peaks. For the Gaussian peaks, Chen's peak shape method was applied to determine the kinetic parameters of the samples.  相似文献   

8.
Here, the synthesis and luminescence analysis of the Tb3+-activated phosphor were reported. The CaY2O4 phosphors were synthesized using a modified solid-state reaction method with a variable doping concentration of Tb3+ ion (0.1–2.5 mol%). As synthesized, the phosphor was characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis techniques for the optimized concentration of doping ions. The prepared phosphor showed a cubic structure, and FTIR analysis confirmed functional group analysis. It was discovered that the intensity of 1.5 mol% was higher than at other concentrations after the photoluminescence (PL) excitation and emission spectra were recorded for different concentrations of doping ions. The excitation was monitored at 542 nm, and the emission was monitored at 237 nm. At 237 nm excitation, the emission peaks were found at 620 nm (5D47F3), 582 nm (5D47F4), 542 nm (5D47F5), and 484 nm (5D47F6). The 1931 CIE (x, y) chromaticity coordinates showed the distribution of the spectral region calculated from the PL emission spectra. The values of (x = 0.34 and y = 0.60) were very close to dark green emission. Therefore, the produced phosphor would be very useful for light-emitting diode (green component) applications. Thermoluminescence glow curve analysis for various concentrations of doping ions and various ultraviolet (UV) exposure times was carried out, and a single broad peak was found at 252°C. The computerized glow curve deconvolution method was used to obtain the related kinetic parameters. The prepared phosphor exhibited an excellent response to UV dose and could be useful for UV ray dosimetry.  相似文献   

9.
This investigation reports, the effect of the concentration of erbium and lead ions on the physical, structural and optical properties of lead borosilicate glasses. These glasses were synthesized by the melt quench method. In the synthesis, the concentration of the erbium (Er3+) ion was varied in the order of 0.0, 0.1, 0.5, 1.0 and 2.0 mol% and lead (Pb2+) ion was varied in the order of 30, 29.9, 29.5, 29 and 28 mol%. The glasses were analyzed using X‐ray diffraction (XRD), Fourier transform infrared (FT‐IR) and UV–vis–NIR spectroscopy. From XRD, the amorphous nature of lead borosilicate glasses was confirmed. The functional groups which were present in the glasses have been identified by analyzing the FT‐IR spectrum. From the absorption spectra, the oscillator strengths as well as the Judd–Ofelt (JO) intensity parameters were determined and compared with other hosts. The JO intensity parameters were further used to calculate certain radiative properties for the excited luminescent levels of Er3+ ion. From emission spectra, full width at half maxima (FWHM), stimulated emission cross‐sections (σe) and certain lasing parameters were evaluated and compared with reference host glasses. The lifetimes of 4I13/2 excited level of Er3+ ion have also been recorded and analyzed. The calculated and experimental lifetimes were compared in terms of quantum efficiencies. From the photoluminescence analysis, the erbium doped lead borosilicate glasses well suited for optical fiber amplifiers are discussed.  相似文献   

10.
A blue CaMgSi2O6:Eu2+ phosphor was prepared by the solid‐state reaction method and the phosphor characterized in terms of crystal structure, particle size, photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties using X‐ray diffraction (XRD), transmission electron microscopy (TEM), PL spectroscopy, TLD reader and ML impact technique. The XRD result shows that phosphor is formed in a single phase and has a monoclinic structure with the space group C2/c. Furthermore, the PL excitation spectra of Eu2+‐doped CaMgSi2O6 phosphor showed a strong band peak at 356 nm and the PL emission spectrum has a peak at 450 nm. The depths and frequency factors of trap centers were calculated using the TL glow curve by deconvolution method in which the trap depths were found to be 0.48 and 0.61 eV. The formation of CaMgSi2O6:Eu2+ phosphor was confirmed by Fourier transform infrared spectroscopy. The ML intensity increased linearly with the impact velocity of the piston used to deform the phosphor. It was shown that the local piezoelectricity‐induced electron bombardment model is responsible for the ML emission. Finally, the optical properties of CaMgSi2O6:Eu2+ phosphors are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Optical materials composed of Ba9–3(m+n)/2ErmYbnY2Si6O24 (m = 0.005–0.2, n = 0–0.3) were prepared using a solid‐state reaction. The X‐ray diffraction patterns of the obtained phosphors were examined to index the peak positions. The photoluminescence (PL) excitation and emission spectra of the Er3+‐activated phosphors and the critical emission quenching as a function of Er3+ content in the Ba9–3m/2ErmY2Si6O24 structure were monitored. The spectral conversion properties of Er3+ and Er3+–Yb3+ ions doped in Ba9Y2Si6O24 phosphors were elucidated under diode‐laser irradiation at 980 nm. Up‐conversion emission spectra and the dependence of the emission intensity on pump power for the Ba8.55Er0.1Yb0.2Y2Si6O24 phosphor were investigated. The desired up‐conversion of the emitted light, which passed through the green, yellow, orange and red regions of the spectrum, was achieved through the use of appropriate Er3+ and/or Yb3+ concentrations in the host structure and 980 nm excitation light. The up‐conversion mechanism in the phosphors is described by an energy‐level schematic. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, we report the synthesis of Y2O3:Er3+, Y2O3:Yb3+ and Y2O3:Er3+,Yb3+ nanophosphors by the combustion synthesis method using urea as fuel. The doping agents were incorporated in the form of erbium nitrate and ytterbium nitrate. X‐Ray diffraction (XRD) patterns revealed that the synthesized particles have a body‐centered cubic structure with space group Ia‐3. The photoluminescence (PL) properties were investigated after UV and infrared irradiation at room temperature. A strong characteristic emission of Er3+ and Yb3+ ions was identified, and the influence of doping concentration on the PL properties was systematically studied. Energy transfer from Yb3+ to Er3+ ions was observed in Y2O3 nanophosphors. The obtained result may be useful in potential applications such as bioimaging. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Ca2MgSi2O7:Eu2+,Dy3+ phosphor was prepared by the solid‐state reaction method under a weak reducing atmosphere. The obtained phosphor was characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FT‐IR) techniques. The phase structure of the Ca2MgSi2O7:Eu2+,Dy3+ phosphor was akermanite type, which is a member of the melilite group. The surface morphology of the sintered phosphor was not uniform and phosphors aggregated tightly. EDX and FT‐IR spectra confirm the elements present in the Ca2MgSi2O7:Eu2+,Dy3+ phosphor. Under UV excitation, a broadband emission spectrum was found. The emission spectra observed in the green region centered at 535 nm, which is due to the 4f–5d transition. The mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increases in the mechanical load. The ML spectra were similar to the photoluminescence (PL), which indicates that ML is emitted from the same emitting center of Eu2+ ions as PL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A new phosphor CaAl(SO4)2Br doped with Dy, Ce and Eu is reported. Rare earth (Dy, Eu and Ce)‐doped polycrystalline CaAl(SO4)2Br phosphors were prepared using a wet chemical reaction method and studied for X‐ray diffraction and photoluminescence (PL) characteristics. Dy3+ emission in the CaAl(SO4)2Br lattice was observed at 484 and 574 nm in the blue and yellow regions of the spectrum, which are assigned to 4 F9/26H15/2 and 4 F9/26H13/2 transitions of the Dy3+ ion, respectively. While the PL emission spectra of CaAl(SO4)2Br:Ce phosphor showed Ce3+ emission at 347 nm due to 5d → 4f transition of the Ce3+ ion. In a CaAl(SO4)2Br:Eu lattice, Eu3+ emissions were observed at 593 and 617 nm, coming from the 5D07 F1 and 5D07 F2 electron transitions, respectively. The PL study showed that the intensity of electric dipole transition at 617 nm dominates over that of magnetic dipole transition at 590 nm. The maximum PL intensity was obtained for a 1 mol% concentration of Eu3+ in CaAl(SO4)2Br host lattice. The results showed that the material may be a promising candidate as a blue‐, yellow‐ and red‐emitting phosphor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, we studied the luminescence properties of Tb3+‐doped MgPbAl10O17 green phosphor. To understand the excitation mechanism and corresponding emission of the prepared phosphor, its structural, morphological and photoluminescence properties were investigated. In general, for green emission, Tb3 is used as an activator and the obtained excitation and emission spectra indicated that this phosphor can be effectively excited by a wavelength of 380 nm, and exhibits bright green emission centered at 545 nm corresponding to the f → f transition of trivalent terbium ions. The chromaticity coordinates were (Cx = 0.263, Cy = 0.723). The impact of Tb3+ concentration on the relative emission intensity was investigated, and the best doping concentration was found to be 2 mol%. This study suggests that Tb3+‐doped MgPbAl10O17 phosphor is a strong candidate for a green component in phosphor‐converted white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A luminescent double perovskite phosphor Sr2YNbO6 doped with Eu3+ crystallized to the monoclinic phase and was synthesized successfully via a conventional high-temperature combustion method. The formation of the crystal structure, phase purity, and surface morphology were studied using X-ray diffraction patterns and scanning electron microscopy. The characteristic vibrations between the atoms of the functional groups present in phosphor were studied using Fourier transform infrared spectra analysis. The luminescence properties of the prepared phosphors were investigated in terms of photoluminescence (PL) and thermoluminescence (TL). PL excitation spectra exhibited charge transfer bands and the characteristic 4f6 transitions of Eu3+. A prominent PL emission was obtained for the phosphor doped with 4 mol% Eu3+ under the 396 nm excitation wavelength. PL emission quenching was observed for the higher doping concentrations due to a multipole–multipole interaction. A highly intense PL emission arose due to the hypersensitive 5D07F2 electric dipole transition of Eu3+ that dominated the emission spectra. The thermal stability of the phosphor was examined through temperature-dependent PL. The TL properties of the Sr2YNbO6 double perovskites irradiated with a 90Sr beta source at different doses were measured. The double perovskite phosphors under study showed a linear dose–response with increasing beta dose, ranging from 1 Gy to 10 Gy. Trapping parameters of the TL glow curves were determined using Chen's peak shape method and computerized glow curve deconvolution (CGCD). CGCD fitting of the TL glow curves revealed that it was consisted of three major peaks and followed second-order kinetics. The estimated activation energies were determined using different methods and were comparable and significant.  相似文献   

17.
A near ultraviolet excitable phosphor based on Sm3+‐doped YAl3(BO3)4 has been synthesized by modified solid‐state reaction at 1000°C. The phase purity and photoluminescence (PL) behavior of the phosphor are studied in detail using the powder X‐ray diffraction technique and PL measurements. X‐ray diffraction reveals that the phase purity of YAl3(BO3)4 critically depends upon the boric acid concentration. The phosphor has strong excitation at 406 nm in the near ultraviolet region (350–420 nm) and its emission peaks were monitored at 564, 599 and 643 nm. Further, detailed PL analysis demonstrates that the substitution of Sm3+ ions at sites of Y3+ and Al3+ ions enhances the PL efficiency of the phosphor appreciably. First, the PL efficiency of YAl3(BO3)4:Sm3+ was compared with commercial (Y,Gd)BO3:Eu3+ red phosphor. The Fourier transform infrared study provides essential information regarding the change in metal–oxygen bond vibrations of the phosphor. The morphology of the phosphor was investigated through scanning electron microscopy, which reveals that the phosphor possessed distorted spherical and rectangular shapes with average grain sizes in the range 0.5–1 µm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Cerium‐doped Sr4Al14O25 phosphor is prepared using a single‐step combustion synthesis and its X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) and thermoluminescence (TL) properties are characterized. XRD reveals the formation of the desired phase in the prepared sample. SEM micrographs of the prepared Sr4Al14O25 phosphor show that the particle size is 10 µm. The prepared Sr4Al14O25, along with Sr4Al14O25:Cex (x = 0.5–5 mol%) shows a PL emission peak at 314 nm under UV excitation of 262 nm wavelength due to 5d → 4f transition. The phosphor is suitable for higher concentrations of Ce ions. The TL glow peak reveals three clearly visible distinct peaks at temperatures around 130, 231 and 336ºC. The three peaks are separated by deconvolution and kinetic parameters calculated using Chen's peak shape method. The calculation shows that the reaction follows second‐order kinetics with activation energy (E) values of 0.52, 0.81 and 1.12 eV, and frequency factor (s) values of 5.58 × 105, 4.53 × 107 and 4.57 × 108 s‐1 for the three individual peaks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Eu3+‐activated MAl(SO4)2Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X‐ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu3+‐doped SrAl(SO4)2Br and MgAl(SO4)2Br phosphors exhibited characteristic red emission coming from the 5D07F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu3+. The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4)2Br:Eu3+, (M = Mg, Sr) phosphors have potential application in near‐UV light‐emitting diodes as efficient red‐emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号