首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X. Hu  E. C. Lee    N. E. Baker 《Genetics》1995,141(2):607-617
Mutations at the scabrous locus (sca) affect cell-cell signaling during neural developent. Twenty-one mutant alleles of scabrous have been analyzed. Many synthesize no sca protein. In others, a defective protein is arrested intracellularly. Two mutants in which protein is not arrested must affect sca protein function outside the cell. Both affect the fibrinogen related domain (FReD), a 200-amino acid segment conserved in fibrinogen, tenascins, and other proteins. In fibrinogen, this region is involved in protein interactions and is altered in human mutations affecting blood clotting. In sca(UM2), an invariant Asp residue is replaced by Asn. In sca(MSKF), an insertion of the hobo transposable element truncates the sca protein at the start of the FReD. The sca(MSKF) allele has dominant negative properties, indicating that the truncated amino-terminal portion interferes with the function of some other gene product. These mutations show that the conserved FReD is essential for wild-type sca function, but suggest that the amino-terminal domain also interacts with other proteins. Genetic interactions identify the neurogenic genes Notch and Delta as potential interacting proteins, but other neural mutations were without effect. Models for the role of a two-domain protein in neural development are discussed.  相似文献   

2.
We evaluated the hypothesis that the Drosophila melanogaster second chromosome gene scabrous (sca), a candidate sensory bristle number quantitative trait locus (QTL), contributes to naturally occurring variation in bristle number. Variation in abdominal and sternopleural bristle number was quantified for wild-derived sca alleles in seven genetic backgrounds: as homozygous second chromosomes (C2) in an isogenic background, homozygous lines in which approximately 20 cM including the sca locus had been introgressed into the isogenic background (sca BC), as C2 and sca BC heterozygotes and hemizygotes against a P element insertional sca allele and a P-induced sca deficiency in the same isogenic background, and as sca BC heterozygotes against the wild-type sca allele of isogenic strain. Molecular restriction map variation was determined for a 45 kb region including the sca locus, and single-stranded conformational polymorphism (SSCP) was examined for the third intron and parts of the third and fourth exons. Associations between each of the 27 molecular polymorphisms and bristle number were evaluated within each genotype and on the first principal component score determined from all seven genotypes, separately for each sex and bristle trait. Permutation tests were used to assess the empirical significance thresholds, accounting for multiple, correlated tests, and correlated markers. Three sites in regulatory regions were associated with female-specific variation in abdominal bristle number, one of which was an SSCP site in the region of the gene associated with regulation of sca in embryonic abdominal segments.  相似文献   

3.
Qu X  Schaller GE 《Plant physiology》2004,136(2):2961-2970
In Arabidopsis, ethylene is perceived by a receptor family consisting of five members, one of these being ETR1. The N-terminal half of ETR1 functions as a signal input domain. The C-terminal region of ETR1, consisting of a His kinase domain and a putative receiver domain, is likely to function in signal output. The role of the proposed signal output region in ethylene signaling was examined in planta. For this purpose, the ability of mutant versions of ETR1 to rescue the constitutive ethylene-response phenotype of the etr1-6;etr2-3;ein4-4 triple loss-of-function mutant line was examined. A truncated version of ETR1 that lacks both the His kinase domain and the receiver domain failed to rescue the triple mutant phenotype. A truncated ETR1 receptor that lacks only the receiver domain restored normal growth to the triple mutant in air, but the transgenic seedlings displayed hypersensitivity to low doses of ethylene. A mutation that eliminated His kinase activity had a modest effect upon the ability of the receptor to repress ethylene responses in air. These results demonstrate that the His kinase domain plays a role in the repression of ethylene responses. The potential roles of the receiver domain and His kinase activity in ethylene signaling are discussed.  相似文献   

4.
A. Yuryev  J. L. Corden 《Genetics》1996,143(2):661-671
The largest subunit of RNA polymerase II contains a repetitive C-terminal domain (CTD) consisting of tandem repeats of the consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4) Ser(5)Pro(6) Ser(7). Substitution of nonphosphorylatable amino acids at positions two or five of the Saccharomyces cerevisiae CTD is lethal. We developed a selection ssytem for isolating suppressors of this lethal phenotype and cloned a gene, SCA1 (suppressor of CTD alanine), which complements recessive suppressors of lethal multiple-substitution mutations. A partial deletion of SCA1 (sca1Δ::hisG) suppresses alanine or glutamate substitutions at position two of the consensus CTD sequence, and a lethal CTD truncation mutation, but SCA1 deletion does not suppress alanine or glutamate substitutions at position five. SCA1 is identical to SRB9, a suppressor of a cold-sensitive CTD truncation mutation. Strains carrying dominant SRB mutations have the same suppression properties as a sca1Δ::hisG strain. These results reveal a functional difference between positions two and five of the consensus CTD heptapeptide repeat. The ability of SCA1 and SRB mutant alleles to suppress CTD truncation mutations suggest that substitutions at position two, but not at position five, cause a defect in RNA polymerase II function similar to that introduced by CTD truncation.  相似文献   

5.
Wu C  Söderhäll K  Söderhäll I 《Proteomics》2011,11(11):2249-2264
To isolate pathogen-associated molecular patterns (PAMPs)-binding molecules, the bacterium, Staphylococcus aureus was used as an affinity matrix to find bacteria-binding proteins in the plasma of the freshwater crayfish, Pacifastacus leniusculus. Two new bacteria-binding ficolin-like proteins (FLPs) were identified by 2-DE and MS analysis. The FLPs have a fibrinogen-related domain (FReD) in their C-terminal and a repeat region in their N-terminal regions with putative structural similarities to the collagen-like domain of vertebrate ficolins and mannose binding lectins (MBLs). Phylogenetic analysis shows that the newly isolated crayfish FLP1 and FLP2 cluster separately from other FReD-containing proteins. A tissue distribution study showed that the mRNA expression of FLP occurred mainly in the hematopoietic tissue (Hpt) and in the hepatopancreas. Recombinant FLPs exhibited agglutination activity of Gram-negative bacteria Escherichia coli and Aeromonas hydrophila in the presence of Ca(2+) . The FLPs could bind to A. hydrophila, E. coli as well as S. aureus as judged by bacteria adsorption. Moreover, the FLPs may help crayfish to clear Gram-negative bacteria, but not Gram-positive bacteria which had been injected into the hemolymph. When Gram-negative bacteria coated with FLPs were incubated with Hpt cells, a lower death rate of the cells was found compared with control treatment. Our results suggest that FLPs function as pattern recognition receptors in the immune response of crayfish.  相似文献   

6.
The LAG-2 membrane protein is a putative signaling ligand for the LIN-12 and GLP-1 receptors of Caenorhabditis elegans. LAG-2, like its Drosophila homologues Delta and Serrate, acts in a conserved signal transduction pathway to regulate cell fates during development. In this article, we investigate the functional domains of LAG-2. For the most part, mutants were constructed in vitro and assayed for activity in transgenic animals. We find a functional role for all major regions except one. Within the extracellular domain, the N-terminal region, which bears no known motif, and the DSL domain are both required. By contrast, the region bearing epidermal growth factor-like repeats can be deleted with no apparent reduction in rescuing activity. The intracellular region is not required for activity but instead plays a role in down-regulating LAG-2 function. Finally, membrane association is critical for mutant rescue.  相似文献   

7.
C Montell  G M Rubin 《Cell》1988,52(5):757-772
The fruit fly Drosophila melanogaster has been extensively used to identify genes required for photoreceptor cell function. We show that the ninaC gene, originally isolated as a Drosophila visual mutation with an electrophysiological phenotype, encodes two novel cytoskeletal proteins. We identified the DNA sequences encoding the ninaC gene by rescuing the electrophysiological phenotype using P-element-mediated germ line transformation. The ninaC locus is expressed as two extensively overlapping mRNAs encoding proteins of 1135 and 1501 amino acids. Both proteins contain a putative protein kinase domain joined to a domain homologous to the head region of the myosin heavy chain and are spatially restricted to photoreceptor cells.  相似文献   

8.
9.
The role of scabrous (sca) in the evenly spaced bristle pattern of Drosophila is explored. Loss-of-function of sca results in development of an excess of bristles. Segregation of alternately spaced bristle precursors and epidermal cells from a group of equipotential cells relies on lateral inhibition mediated by Notch and Delta (Dl). In this process, presumptive bristle precursors inhibit the neural fate of neighbouring cells, causing them to adopt the epidermal fate. We show that Dl, a membrane-bound ligand for Notch, can inhibit adjacent cells, in direct contact with the precursor, in the absence of Sca. In contrast, inhibition of cells not adjacent to the precursor requires, in addition, Sca, a secreted molecule with a fibrinogen-related domain. Over-expression of Sca in a wild-type background, leads to increased spacing between bristles, suggesting that the range of signalling has been increased. scabrous acts nonautonomously, and we present evidence that, during bristle precursor segregation, Sca is required to maintain the normal adhesive properties of epithelial cells. The possible effects of such changes on the range of signalling are discussed. We also show that the sensory organ precursors extend numerous fine cytoplasmic extensions bearing Dl molecules, and speculate on a possible role for these structures during signalling.  相似文献   

10.
The avian erythroblastosis virus v-erbA locus potentiates the oncogenic transformation of erythroid and fibroblast cells and is derived from a host cell gene encoding a thyroid hormone receptor. We report here the use of site-directed mutagenesis to identify and characterize functional domains within the v-erbA protein. Genetic lesions introduced into a putative hinge region or at the extreme C-terminus of the v-erbA coding domain had no significant effect on the biological activity of this polypeptide. In contrast, mutations introduced within the cysteine-lysine-arginine-rich center of the v-erbA coding region, a DNA-binding domain in the thyroid and steroid hormone receptors, abolished or severely compromised the ability of the viral protein to function. Our results suggest that the mechanism of action of the v-erbA protein in establishing the neoplastic phenotype is closely related to its ability to interact with DNA, presumably thereby altering expression of host target genes by either mimicking or interfering with the action of the normal c-erbA gene product.  相似文献   

11.
12.
13.
To date, the function of most genes in the Arabidopsis (Arabidopsis thaliana) genome is unknown. Here we present the first analysis of the novel, plant-specific BRX (BREVIS RADIX) gene family. BRX has been identified as a modulator of root growth through a naturally occurring loss-of-function allele. The biochemical function of BRX is enigmatic, however several domains in BRX are conserved in the proteins encoded by the related BRX-like (BRXL) genes. The similarity between Arabidopsis BRXL proteins within these domains ranges from 84% to 93%. Nevertheless, analysis of brx brx-like multiple mutants indicates that functional redundancy of BRXLs is limited. This results mainly from differences in protein activity, as demonstrated by assaying the propensity of constitutively expressed BRXL cDNAs to rescue the brx phenotype. Among the genes tested, only BRXL1 can replace BRX in this assay. Nevertheless, BRXL1 does not act redundantly with BRX in vivo, presumably because it is expressed at a much lower level than BRX. BRX and BRXL1 similarity is most pronounced in a characteristic tandem repeat domain, which we named BRX domain. One copy of this domain is also present in the PRAF (PH, RCC1, and FYVE)-like family proteins. The BRX domain mediates homotypic and heterotypic interactions within and between the BRX and PRAF protein families in yeast (Saccharomyces cerevisiae), and therefore likely represents a novel protein-protein interaction domain. The importance of this domain for BRX activity in planta is underscored by our finding that expression of the C-terminal fragment of BRX, comprising the two BRX domains, is largely sufficient to rescue the brx phenotype.  相似文献   

14.
Prevailing models place spectrin downstream of ankyrin in a pathway of assembly and function in polarized cells. We used a transgene rescue strategy in Drosophila melanogaster to test contributions of four specific functional sites in beta spectrin to its assembly and function. (1) Removal of the pleckstrin homology domain blocked polarized spectrin assembly in midgut epithelial cells and was usually lethal. (2) A point mutation in the tetramer formation site, modeled after a hereditary elliptocytosis mutation in human erythrocyte spectrin, had no detectable effect on function. (3) Replacement of repetitive segments 4-11 of beta spectrin with repeats 2-9 of alpha spectrin abolished function but did not prevent polarized assembly. (4) Removal of the putative ankyrin-binding site had an unexpectedly mild phenotype with no detectable effect on spectrin targeting to the plasma membrane. The results suggest an alternate pathway in which spectrin directs ankyrin assembly and in which some important functions of spectrin are independent of ankyrin.  相似文献   

15.
Spinocerebellar Ataxia 8 (SCA8) appears unique among triplet repeat expansion-induced neurodegenerative diseases because the predicted gene product is a noncoding RNA. Little is currently known about the normal function of SCA8 in neuronal survival or how repeat expansion contributes to neurodegeneration. To investigate the molecular context in which SCA8 operates, we have expressed the human SCA8 noncoding RNA in Drosophila. SCA8 induces late-onset, progressive neurodegeneration in the Drosophila retina. Using this neurodegenerative phenotype as a sensitized background for a genetic modifier screen, we have identified mutations in four genes: staufen, muscle-blind, split ends, and CG3249. All four encode neuronally expressed RNA binding proteins conserved in Drosophila and humans. Although expression of both wild-type and repeat-expanded SCA8 induce neurodegeneration, the strength of interaction with certain modifiers differs between the two SCA8 backgrounds, suggesting that CUG expansions alter associations with specific RNA binding proteins. Our demonstration that SCA8 can recruit Staufen and that the interaction domain maps to the portion of the SCA8 RNA that undergoes repeat expansion in the human disease suggests a specific mechanism for SCA8 function and disease. Genetic modifiers identified in our SCA8-based screens may provide candidates for designing therapeutic interventions to treat this disease.  相似文献   

16.
We report the molecular characterization of the Posterior sex combs-Suppressor 2 of zeste region of Drosophila melanogaster. The distal breakpoint of the Aristapedioid inversion divides the region into two parts. We have molecularly mapped the lesions associated with several loss of function mutations in the Polycomb group gene Posterior sex combs (Psc) proximal to this breakpoint. In addition, we have found that lesions associated with several loss of function mutations in the Suppressor 2 of zeste [Su(z)2] gene lie distal to this breakpoint. Since the breakpoint does not cause a loss of function in either gene, no essential sequences are shared by these two neighboring genes. There are three dominant gain of function mutations in the region that result in abnormal bristle development. We find that all three juxtapose foreign DNA sequences upstream of the Su(z)2 gene, and that at least two of these mutations (Arp1 and vgD) behave genetically as gain of function mutations in Su(z)2. Northern and in situ hybridization analyses show that the mutations result in increased accumulation of the Su(z)2 mRNA, which we argue is responsible for the bristle loss phenotype.  相似文献   

17.
ARGRII is a regulatory protein which regulates the arginine anabolic and catabolic pathways in combination with ARGRI and ARGRIII. We have investigated, by deletion analysis and fusion to LexA protein, the different domains of ARGRII protein. In contrast to other yeast regulatory proteins, 92% of ARGRII is necessary for its anabolic repression function and 80% is necessary for its catabolic activator function. We can define three domains in this protein: a putative DNA-binding domain containing a zinc finger motif, a region more involved in the repression activity located around the RNase-like sequence, and a large activation domain.  相似文献   

18.
YscD is an essential component of the plasmid pCD1-encoded type III secretion system (T3SS) of Yersinia pestis. YscD has a single transmembrane (TM) domain that connects a small N-terminal cytoplasmic region (residues 1 to 121) to a larger periplasmic region (residues 143 to 419). Deletion analyses established that both the N-terminal cytoplasmic region and the C-terminal periplasmic region are required for YscD function. Smaller targeted deletions demonstrated that a predicted cytoplasmic forkhead-associated (FHA) domain is also required to assemble a functional T3SS; in contrast, a predicted periplasmic phospholipid binding (BON) domain and a putative periplasmic "ring-building motif" domain of YscD could be deleted with no significant effect on the T3S process. Although deletion of the putative "ring-building motif" domain did not disrupt T3S activity per se, the calcium-dependent regulation of the T3S apparatus was affected. The extreme C-terminal region of YscD (residues 354 to 419) was essential for secretion activity and had a strong dominant-negative effect on the T3S process when exported to the periplasm of the wild-type parent strain. Coimmunoprecipitation studies demonstrated that this region of YscD mediates the interaction of YscD with the outer membrane YscC secretin complex. Finally, replacement of the YscD TM domain with a TM domain of dissimilar sequence had no effect on the T3S process, indicating that the TM domain has no sequence-specific function in the assembly or function of the T3SS.  相似文献   

19.
20.
Mutations that truncate the C-terminal non-catalytic moiety of TTBK2 (tau tubulin kinase 2) cause the inherited, autosomal dominant, SCA11 (spinocerebellar ataxia type?11) movement disorder. In the present study we first assess the substrate specificity of TTBK2 and demonstrate that it has an unusual preference for a phosphotyrosine residue at the +2 position relative to the phosphorylation site. We elaborate a peptide substrate (TTBKtide, RRKDLHDDEEDEAMSIYpA) that can be employed to quantify TTBK2 kinase activity. Through modelling and mutagenesis we identify a putative phosphate-priming groove within the TTBK2 kinase domain. We demonstrate that SCA11 truncating mutations promote TTBK2 protein expression, suppress kinase activity and lead to enhanced nuclear localization. We generate an SCA11-mutation-carrying knockin mouse and show that this leads to inhibition of endogenous TTBK2 protein kinase activity. Finally, we find that, in homozygosity, the SCA11 mutation causes embryonic lethality at embryonic day 10. These findings provide the first insights into some of the intrinsic properties of TTBK2 and reveal how SCA11-causing mutations affect protein expression, catalytic activity, localization and development. We hope that these findings will be helpful for future investigation of the regulation and function of TTBK2 and its role in SCA11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号