首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Optimal outbreeding theory predicts fitness benefits to intermediate levels of inbreeding. In the present study, we test for linear (consistent with inbreeding depression) and nonlinear (consistent with optimal outbreeding) effects of inbreeding on reproductive fitness in male and female Drosophila melanogaster . We found linear declines in fitness associated with increased inbreeding for egg-to-adult viability, but not the number of eggs laid or sperm competitive ability. Egg-to-adult viability was also lower in the progeny of inbred males and females mated to unrelated individuals. However, there was no evidence for optimal fitness at intermediate levels of inbreeding for any trait. The present study highlights the importance of considering biologically realistic levels of inbreeding and cross-generational effects when investigating the costs and benefits of mating with relatives.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 501–510.  相似文献   

2.
In laboratory cultures of Drosophila melanogaster derived from an African population, the quantities of six out of seven enzymes (G6PD, IDH, GPDH, ME, MDH, PGM and ADH) were higher in Adh-FF homozygotes than they were in Adh-SS. In crosses between Adh-FF and Adh-SS flies, the differences segregated as co-dominant alleles of a single Mendelian gene closely linked, or identical, to the Adh locus. The generality of these associations was suggested by the study of a French population with a very different history and genetic background. The possibility that the associations were caused by artefacts of the immunodiffusion techniques, or to a linked inversion (In(2L)t), was excluded. Possible ways by which the Adh locus may affect the quantities of other enzymes are discussed.  相似文献   

3.
The effects of inbreeding, with (IS) and without selection (IO) for reproductive fitness, on inbreeding depression and heterozygosity were evaluated in 20 lines of each treatment inbred over seven generations using full-sib mating. The survival of lines was significantly greater in IS (20/20) than in IO (15/20). The competitive index measure of reproductive fitness was significantly lower in the inbred lines than in the outbred base population, but not significantly different in surviving IS and IO lines. There was a trend for higher fitness in the IS treatment as relative fitnesses were 19% higher in IS than IO for surviving lines and 59% higher for all lines. Heterozygosities were lower in the inbred lines than in the base population, and significantly higher in the IS than the IO lines. Consequently, the reduction of inbreeding depression in IS has been achieved, at least in part, by slowing the rate of fixation.  相似文献   

4.
Drastic reductions in population size, or bottlenecks, are thought to significantly erode genetic variability and reduce fitness. However, it has been suggested that a population can be purged of the genetic load responsible for reduced fitness when subjected to bottlenecks. To investigate this phenomenon, we put a number of Drosophila melanogaster isofemale lines known to differ in inbreeding depression through four ‘founder‐flush’ bottleneck cycles with flush sizes of 5 or 100 pairs and assayed for relative fitness (single‐pair productivity) after each cycle. Following the founder‐flush phase, the isofemale lines, with a large flush size and a history of inbreeding depression, recovered most of the fitness lost from early inbreeding, consistent with purging. The same isofemale lines, with a small flush size, did not regain fitness, consistent with the greater effect of genetic drift in these isofemale lines. On the other hand, the isofemale lines that did not show initial inbreeding depression declined in fitness after repeated bottlenecks, independent of the flush size. These results suggest that the nature of genetic variation in fitness may greatly influence the way in which populations respond to bottlenecks and that stochastic processes play an important role. Consequently, an attempt intentionally to purge a population of detrimental variation through inbreeding appears to be a risky strategy, particularly in the genetic management of endangered species.  相似文献   

5.
The influence of natural selection on the magnitude of inbreeding depression is an important issue in conservation biology and the study of evolution. It is generally expected that the magnitude of inbreeding depression in small populations will depend upon the average homozygosity of individuals, as measured by the coefficient of inbreeding (F). However, if deleterious recessive alleles are selectively purged from populations during inbreeding, then inbreeding depression may differ among populations in which individuals have the same inbreeding coefficient. In such cases, the magnitude of inbreeding depression will partly depend on the ancestral inbreeding coefficient (fa), which measures the cumulative proportion of loci that have historically been homozygous and therefore exposed to natural selection. We examined the inbreeding depression that occurred in lineages of Drosophila melanogaster maintained under pedigrees that led to the same inbreeding coefficient (F = 0.375) but different levels of ancestral inbreeding (fa = 0.250 or 0.531). Although inbreeding depression varied substantially among individual lineages, we observed a significant 40% decrease in the median level of inbreeding depression in the treatment with higher ancestral inbreeding. Our results demonstrate that high levels of ancestral inbreeding are associated with greater purging effects, which reduces the inbreeding depression that occurs in isolated populations of small size.  相似文献   

6.
We measured the heterozygous effects on net fitness of a sample of 12 wild-type third chromosomes in D. melanogaster. Effects on fitness were assessed by competing the wild-type chromosomes against balancer chromosomes, to prevent the production of recombinants. The measurements were carried out in the population cage environment in which the life history had been evolving, in an undisturbed population with overlapping generations, and replicated measurements were made on each chromosome to control for confounding effects such as mutation accumulation. We found significant variation among the wild type chromosomes in their additive genetic effect on net fitness. The system provides an opportunity to obtain an accurate estimate of the distribution of heterozygous effects on net fitness, the contribution of different fitness components including male mating success, and the role of intra-chromosomal epistasis in fitness variation.  相似文献   

7.
Summary This experiment was designed to study the relationship between rate of inbreeding and observed inbreeding depression of larval viability, adult fecundity and cold shock mortality in Drosophila melanogaster. Rates of inbreeding used were full-sib mating and closed lines of N=4 and N=20. Eight generations of mating in the N=20 lines, three generations in the N=4 lines and one generation of full-sib mating were synchronised to simultaneously produce individuals with an expected level of inbreeding coefficient (F) of approximately 0.25. Inbreeding depression for the three traits was significant at F=0.25. N=20 lines showed significantly less inbreeding depression than full-sib mated lines for larval viability at approximately the same level of F. A similar trend was observed for fecundity. No effect of rate of inbreeding depression was found for cold shock mortality, but this trait was measured with less precision than the other two. Natural selection acting on loci influencing larval viability and fecundity during the process of inbreeding could explain these results. Selection is expected to be more effective with slow rates of inbreeding because there are more generations and greater opportunity for selection to act before F=0.25 is reached. Selection intensities seem to have been different in the three traits measured. Selection was most intense for larval viability, less intense for fecundity and, perhaps, negligible at loci influencing cold shock mortality.  相似文献   

8.
Selection to avoid inbreeding is predicted to vary across species due to differences in population structure and reproductive biology. Over the past decade, there have been numerous investigations of postcopulatory inbreeding avoidance, a phenomenon that first requires discrimination of mate (or sperm) relatedness and then requires mechanisms of male ejaculate tailoring and/or cryptic female choice to avoid kin. The number of studies that have found a negative association between male-female genetic relatedness and competitive fertilization success is roughly equal to the number of studies that have not found such a relationship. In the former case, the underlying mechanisms are largely unknown. The present study was undertaken to verify and expand upon a previous report of postcopulatory inbreeding avoidance in D. melanogaster, as well as to resolve underlying mechanisms of inbreeding avoidance using transgenic flies that express a sperm head-specific fluorescent tag. However, siblings did not have a lower fertilization success as compared to unrelated males in either the first (P(1) ) or second (P(2) ) mate role in sperm competition with a standard unrelated competitor male in our study population of D. melanogaster. Analyses of mating latency, copulation duration, egg production rate, and remating interval further revealed no evidence for inbreeding avoidance.  相似文献   

9.
10.
Inbreeding depression, the decline in fitness of inbred individuals, is a ubiquitous phenomenon of great relevance in evolutionary biology and in the fields of animal and plant breeding and conservation. Inbreeding depression is due to the expression of recessive deleterious alleles that are concealed in heterozygous state in noninbred individuals, the so-called inbreeding load. Genetic purging reduces inbreeding depression by removing these alleles when expressed in homozygosis due to inbreeding. It is generally thought that fast inbreeding (such as that generated by full-sib mating lines) removes only highly deleterious recessive alleles, while slow inbreeding can also remove mildly deleterious ones. However, a question remains regarding which proportion of the inbreeding load can be removed by purging under slow inbreeding in moderately large populations. We report results of two long-term slow inbreeding Drosophila experiments (125–234 generations), each using a large population and a number of derived lines with effective sizes about 1000 and 50, respectively. The inbreeding load was virtually exhausted after more than one hundred generations in large populations and between a few tens and over one hundred generations in the lines. This result is not expected from genetic drift alone, and is in agreement with the theoretical purging predictions. Computer simulations suggest that these results are consistent with a model of relatively few deleterious mutations of large homozygous effects and partially recessive gene action.Subject terms: Quantitative trait, Inbreeding  相似文献   

11.
Genetic interactions can play an important role in the evolution of reproductive strategies. In particular, negative dominance‐by‐dominance epistasis for fitness can theoretically favour sex and recombination. This form of epistasis can be detected statistically because it generates nonlinearity in the relationship between fitness and inbreeding coefficient. Measures of fitness in progressively inbred lines tend to show limited evidence for epistasis. However, tests of this kind can be biased against detecting an accelerating decline due to line losses at higher inbreeding levels. We tested for dominance‐by‐dominance epistasis in Drosophila melanogaster by examining viability at five inbreeding levels that were generated simultaneously, avoiding the bias against detecting nonlinearity that has affected previous studies. We find an accelerating rate of fitness decline with inbreeding, indicating that dominance‐by‐dominance epistasis is negative on average, which should favour sex and recombination.  相似文献   

12.
An important issue in conservation biology and the study of evolution is the extent to which inbreeding depression can be reduced or reversed by natural selection. If the deleterious recessive alleles causing inbreeding depression can be 'purged' by natural selection, outbred populations that have a history of inbreeding are expected to be less susceptible to inbreeding depression. This expectation, however, has not been realized in previous laboratory experiments. In the present study, we used Drosophila melanogaster as a model system to test for an association between inbreeding history and inbreeding depression. We created six 'purged' populations from experimental lineages that had been maintained at a population size of 10 male-female pairs for 19 generations. We then measured the inbreeding depression that resulted from one generation of full-sib mating in the purged populations and in the original base population. The magnitude of inbreeding depression in the purged populations was approximately one-third of that observed in the original base population. In contrast to previous laboratory experiments, therefore, we found that inbreeding depression was reduced in populations that have a history of inbreeding. The large purging effects observed in this study may be attributable to the rate of historical inbreeding examined, which was slower than that considered in previous experiments.  相似文献   

13.
Abstract The evolution of fitness is central to evolutionary theory, yet few experimental systems allow us to track its evolution in genetically and environmentally relevant contexts. Reverse evolution experiments allow the study of the evolutionary return to ancestral phenotypic states, including fitness. This in turn permits well‐defined tests for the dependence of adaptation on evolutionary history and environmental conditions. In the experiments described here, 20 populations of heterogeneous evolutionary histories were returned to their common ancestral environment for 50 generations, and were then compared with both their immediate differentiated ancestors and populations which had remained in the ancestral environment. One measure of fitness returned to ancestral levels to a greater extent than other characters did. The phenotypic effects of reverse evolution were also contingent on previous selective history. Moreover, convergence to the ancestral state was highly sensitive to environmental conditions. The phenotypic plasticity of fecundity, a character directly selected for, evolved during the experimental time frame. Reverse evolution appears to force multiple, diverged populations to converge on a common fitness state through different life‐history and genetic changes.  相似文献   

14.
15.
Drosophila melanogaster is polymorphic for the major cuticular hydrocarbon of females. In most populations this hydrocarbon is 7,11-heptacosadiene, but females from Africa and the Caribbean usually possess low levels of 7,11-heptacosadiene and high quantities of its position isomer 5,9-heptacosadiene. Genetic analysis shows that the difference between these two morphs is due to variation at a single segregating factor located on the right arm of chromosome 3 near map position 51.5 and cytological position 87C-D. This is precisely the position of a desaturase gene previously sequenced using primers derived from yeast and mouse, and localized by in situ hybridization to the polytene chromosomes of D. melanogaster. Alleles of this desaturase gene may therefore be responsible for producing the two hydrocarbon morphs. Mating tests following the transfer of these isomers between females of the two morphs show that, in contrast to previous studies, the hydrocarbon profiles have no detectable effect on mating behaviour or sexual isolation.  相似文献   

16.
Many people in Japan often detect an unpleasant odor generated from laundry that is hung to dry indoors or when using their already-dried laundry. Such an odor is often described as a "wet-and-dirty-dustcloth-like malodor" or an "acidic or sweaty odor." In this study, we isolated the major microorganisms associated with such a malodor, the major component of which has been identified as 4-methyl-3-hexenoic acid (4M3H). The isolates were identified as Moraxella osloensis by morphological observation and biochemical and phylogenetic tree analyses. M. osloensis has the potential to generate 4M3H in laundry. The bacterium is known to cause opportunistic infections but has never been known to generate a malodor in clothes. We found that M. osloensis exists at a high frequency in various living environments, particularly in laundry in Japan. The bacterium showed a high tolerance to desiccation and UV light irradiation, providing one of the possible reasons why they survive in laundry during and even after drying.  相似文献   

17.
L S Enders  L Nunney 《Heredity》2016,116(3):304-313
Environmental stress generally exacerbates the harmful effects of inbreeding and it has been proposed that this could be exploited in purging deleterious alleles from threatened inbred populations. However, understanding what factors contribute to variability in the strength of inbreeding depression (ID) observed across adverse environmental conditions remains a challenge. Here, we examined how the nature and timing of stress affects ID and the potential for purging using inbred and outbred Drosophila melanogaster larvae exposed to biotic (larval competition, bacteria infection) and abiotic (ethanol, heat) stressors compared with unstressed controls. ID was measured during (larval survival) and after (male mating success) stress exposure. The level of stress imposed by each stressor was approximately equal, averaging a 42% reduction in outbred larval survival relative to controls. All stressors induced on average the same ID, causing a threefold increase in lethal equivalents for larval survival relative to controls. However, stress-induced ID in larval success was followed by a 30% reduction in ID in mating success of surviving males. We propose that this fitness recovery is due to ‘intragenerational purging'' whereby fitness correlations facilitate stress-induced purging that increases the average fitness of survivors in later life history stages. For biotic stressors, post-stress reductions in ID are consistent with intragenerational purging, whereas for abiotic stressors, there appeared to be an interaction between purging and stress-induced physiological damage. For all stressors, there was no net effect of stress on lifetime ID compared with unstressed controls, undermining the prediction that stress enhances the effectiveness of population-level purging across generations.  相似文献   

18.
Whitlock MC  Fowler K 《Genetics》1999,152(1):345-353
We performed a large-scale experiment on the effects of inbreeding and population bottlenecks on the additive genetic and environmental variance for morphological traits in Drosophila melanogaster. Fifty-two inbred lines were created from the progeny of single pairs, and 90 parent-offspring families on average were measured in each of these lines for six wing size and shape traits, as well as 1945 families from the outbred population from which the lines were derived. The amount of additive genetic variance has been observed to increase after such population bottlenecks in other studies; in contrast here the mean change in additive genetic variance was in very good agreement with classical additive theory, decreasing proportionally to the inbreeding coefficient of the lines. The residual, probably environmental, variance increased on average after inbreeding. Both components of variance were highly variable among inbred lines, with increases and decreases recorded for both. The variance among lines in the residual variance provides some evidence for a genetic basis of developmental stability. Changes in the phenotypic variance of these traits are largely due to changes in the genetic variance.  相似文献   

19.
Summary This is a detailed study of the reversions of the ct MR2 allele putatively carrying á mobile element (MR-transposon) in the cut locus. Stable, unstable and superunstable revertants have been identified. Besides, a series of multiple unstable visible and lethal ct mutations derived from the ct MR2 allele have been obtained. They are shown to include supermutable alleles. The results suggest that the MR-transposon is connected with at least three functions: excision; change of orientation; and change of position within the cut locus, these functions being disturbed in different ways in different unstable ct + and ct alleles. In some cases the mutant transitions are somehow strongly stimulated leading to superinstability, reaching the rate of 0.5.  相似文献   

20.
《Fly》2013,7(2):143-150
Activation of the immune system is beneficial in defending against pathogens, but may also have costly side effects on an organism's fitness. In this study we examine the fitness consequences of immune challenge in female Drosophila melanogaster by examining both direct (within generation) and indirect (between generations) costs and benefits of immune challenge. Though passing immunity to offspring has been studied in mammals for many years, only recently have researchers found evidence for a cross-generational priming response in invertebrates. By examining both potential fitness costs and benefits in the next generation, we were able to determine what effect immune challenge has on fitness. In agreement with other studies, we found a direct cost to infection, where immune challenged females laid fewer eggs than unchallenged females in two of the three lines we examined. In addition, we found some evidence for indirect costs. Offspring from immune challenged mothers had shorter lifespans than those from unchallenged mothers in two of the three lines. Interestingly, we do not see any effect of maternal immune challenge on offspring's ability to overcome an infection, nor do we see an effect on other fitness traits measured, including egg size, egg-adult viability, and offspring resistance to oxidative stress. While previous studies in bumblebees and beetles have demonstrated cross-generation priming, our results suggest that it may not be a general phenomenon, and more work is needed to determine how widespread it is.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号