首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The currently available methods for locating quantitative trait loci (QTLs) and measuring their effects in segregating populations lack precision unless individual QTLs have very high heritabilities. The use of recombinant backcross lines containing short regions of donor chromosome introgressed into a constant recipient background permits QTLs to be located with greater precision. The present paper describes the use of molecular markers to introgress defined short regions of chromosome from a donor doubled haploid calabrese line of Brassica oleracea (var. italica) into a recipient short generation variety (Brassica oleracea var. alboglabra). We demonstrate that in just two or three generations of backcrossing, combined with selection for mapped molecular markers, the generation of a library of recombinant backcross lines is feasible. The possible use and refinement of these lines are discussed. Key words : backcrossing, Brassica oleracea, introgression, molecular markers, near-isogenic lines, QTL mapping, recombinant backcross lines, substitution lines.  相似文献   

2.
The effect of a gene involved in the variation of a quantitative trait may change due to epistatic interactions with the overall genetic background or with other genes through digenic interactions. The classical populations used to map quantitative trait loci (QTL) are poorly efficient to detect epistasis. To assess the importance of epistasis in the genetic control of fruit quality traits, we compared 13 tomato lines having the same genetic background except for one to five chromosome fragments introgressed from a distant line. Six traits were assessed: fruit soluble solid content, sugar content and titratable acidity, fruit weight, locule number and fruit firmness. Except for firmness, a large part of the variation of the six traits was under additive control, but interactions between QTL leading to epistasis effects were common. In the lines cumulating several QTL regions, all the significant epistatic interactions had a sign opposite to the additive effects, suggesting less than additive epistasis. Finally the re-examination of the segregating population initially used to map the QTL confirmed the extent of epistasis, which frequently involved a region where main effect QTL have been detected in this progeny or in other studies.  相似文献   

3.
The majority of agronomically important crop traits are quantitative, meaning that they are controlled by multiple genes each with a small effect (quantitative trait loci, QTLs). Mapping and isolation of QTLs is important for efficient crop breeding by marker‐assisted selection (MAS) and for a better understanding of the molecular mechanisms underlying the traits. However, since it requires the development and selection of DNA markers for linkage analysis, QTL analysis has been time‐consuming and labor‐intensive. Here we report the rapid identification of plant QTLs by whole‐genome resequencing of DNAs from two populations each composed of 20–50 individuals showing extreme opposite trait values for a given phenotype in a segregating progeny. We propose to name this approach QTL‐seq as applied to plant species. We applied QTL‐seq to rice recombinant inbred lines and F2 populations and successfully identified QTLs for important agronomic traits, such as partial resistance to the fungal rice blast disease and seedling vigor. Simulation study showed that QTL‐seq is able to detect QTLs over wide ranges of experimental variables, and the method can be generally applied in population genomics studies to rapidly identify genomic regions that underwent artificial or natural selective sweeps.  相似文献   

4.
Many biologically and economically important traits in plants and animals are quantitative/multifactorial, being controlled by several quantitative trait loci (QTL). QTL are difficult to locate accurately by conventional methods using molecular markers in segregating populations, particularly for traits of low heritability or for QTL with small effects. In order to resolve this, large (often unrealistically large) populations are required. In this paper we present an alternative approach using a specially developed resource of lines that facilitate QTL location first to a particular chromosome, then to successively smaller regions within a chromosome (< or = 0.5 cM) by means of simple comparisons among a few lines. This resource consists of "Stepped Aligned Inbred Recombinant Strains" (STAIRS) plus single whole Chromosome Substitution Strains (CSSs). We explain the analytical power of STAIRS and illustrate their construction and use with Arabidopsis thaliana, although the principles could be applied to many organisms. We were able to locate flowering QTL at the top of chromosome 3 known to contain several potential candidate genes.  相似文献   

5.
Luo ZW  Wu CI  Kearsey MJ 《Genetics》2002,161(2):915-929
Dissecting quantitative genetic variation into genes at the molecular level has been recognized as the greatest challenge facing geneticists in the twenty-first century. Tremendous efforts in the last two decades were invested to map a wide spectrum of quantitative genetic variation in nearly all important organisms onto their genome regions that may contain genes underlying the variation, but the candidate regions predicted so far are too coarse for accurate gene targeting. In this article, the recurrent selection and backcross (RSB) schemes were investigated theoretically and by simulation for their potential in mapping quantitative trait loci (QTL). In the RSB schemes, selection plays the role of maintaining the recipient genome in the vicinity of the QTL, which, at the same time, are rapidly narrowed down over multiple generations of backcrossing. With a high-density linkage map of DNA polymorphisms, the RSB approach has the potential of dissecting the complex genetic architecture of quantitative traits and enabling the underlying QTL to be mapped with the precision and resolution needed for their map-based cloning to be attempted. The factors affecting efficiency of the mapping method were investigated, suggesting guidelines under which experimental designs of the RSB schemes can be optimized. Comparison was made between the RSB schemes and the two popular QTL mapping methods, interval mapping and composite interval mapping, and showed that the scenario of genomic distribution of QTL that was unlocked by the RSB-based mapping method is qualitatively distinguished from those unlocked by the interval mapping-based methods.  相似文献   

6.
Advanced backcross QTL analysis was used to identify quantitative trait loci (QTL) for agronomic performance in a population of BC2F3:5 introgression lines created from the cross of a Colombian large red-seeded commercial cultivar, ICA Cerinza, and a wild common bean accession, G24404. A total of 157 lines were evaluated for phenological traits, plant architecture, seed weight, yield and yield components in replicated trials in three environments in Colombia and genotyped with microsatellite, SCAR, and phaseolin markers that were used to create a genetic map that covered all 11 linkage groups of the common bean genome with markers spaced at an average distance of every 10.4 cM. Segregation distortion was most significant in regions orthologous for a seed coat color locus (R-C) on linkage group b08 and two domestication syndrome genes, one on linkage group b01 at the determinacy (fin) locus and the other on linkage group b02 at the seed-shattering (st) locus. Composite interval mapping analysis identified a total of 41 significant QTL for the eight traits measured of which five for seed weight, two for days to flowering, and one for yield were consistent across two or more environments. QTL were located on every linkage group with b06 showing the greatest number of independent loci. A total of 13 QTL for plant height, yield and yield components along with a single QTL for seed size showed positive alleles from the wild parent while the remaining QTL showed positive alleles from the cultivated parent. Some QTL co-localized with regions that had previously been described to be important for these traits. Compensation was observed between greater pod and seed production and smaller seed size and may have resulted from QTL for these traits being linked or pleiotropic. Although wild beans have been used before to transfer biotic stress resistance traits, this study is the first to attempt to simultaneously obtain a higher yield potential from wild beans and to analyze this trait with single-copy markers. The wild accession was notable for being from a unique center of diversity and for contributing positive alleles for yield and other traits to the introgression lines showing the potential that advanced backcrossing has in common bean improvement.  相似文献   

7.
We constructed recombinant inbred lines of a cross between naturally occurring ecotypes of Avena barbata (Pott ex Link), Poaceae, associated with contrasting moisture environments. These lines were assessed for fitness in common garden reciprocal transplant experiments in two contrasting field sites in each of two years, as well as a novel, benign greenhouse environment. An AFLP (amplified fragment length polymorphism) linkage map of 129 markers spanned 644 cM in 19 linkage groups, which is smaller, with more linkage groups, than expected. Therefore parts of the A. barbata genome remain unmapped, possibly because they lack variation between the ecotypes. Nevertheless, we identified QTL (quantitative trait loci) under selection in both native environments and in the greenhouse. Across years at the same site, the same loci remain under selection, for the same alleles. Across sites, an overlapping set of loci are under selection with either (i) the same alleles favoured at both sites or (ii) loci under selection at one site and neutral at the other. QTL under selection in the greenhouse were generally unlinked to those under selection in the field because selection acted on a different trait. We found little evidence that selection favours alternate alleles in alternate environments, which would be necessary if genotype by environment interaction were to maintain genetic variation in A. barbata. Additive effect QTL were best able to explain the genetic variation among recombinant inbred lines for the greenhouse environment where heritability was highest, and past selection had not eliminated variation.  相似文献   

8.
Mutic JJ  Wolf JB 《Molecular ecology》2007,16(11):2371-2381
Indirect genetic effects arise when genes expressed in one individual affect the expression of traits in other individuals. The importance of indirect genetic effects has been recognized for a diversity of evolutionary processes including kin selection, sexual selection, community structure and multilevel selection, but data regarding their genetic architecture and prevalence throughout the genome remain scarce, especially for interactions between unrelated individuals. Using a set of 411 Bay-0 x Shahdara Arabidopsis recombinant inbred lines grown with Landsberg neighbours, we examined quantitative trait loci (QTL) having direct and indirect effects on size, developmental, and fitness related traits. Using an interval mapping approach, we identified 15 QTL with direct effects and found that 13 of these QTL had significant indirect effects on trait expression in neighbouring plants. These results suggest widespread pleiotropy, as nearly all direct effect QTL have associated pleiotropic indirect effects. Paradoxically, most indirect effects were of the same sign as direct effects, creating a pattern of nearly universal positive pleiotropy that makes most covariances between direct and indirect effects positive. These results are consistent with a complex genetic basis for intraspecific interactions, but suggest that interactions between neighbouring plants are largely positive, rather than negative as would be expected for competition. In addition to their evolutionary and ecological importance, these pleiotropic relationships between DGE and IGE loci have implications for quantitative genetic studies of natural populations as well as experimental design considerations. Additionally, studies that ignore IGEs may over- or underestimate quantitative genetic parameters, as well as the effect of and variance contributed by QTL.  相似文献   

9.
Meta-analysis of information from quantitative trait loci (QTL) mapping experiments was used to derive distributions of the effects of genes affecting quantitative traits. The two limitations of such information, that QTL effects as reported include experimental error, and that mapping experiments can only detect QTL above a certain size, were accounted for. Data from pig and dairy mapping experiments were used. Gamma distributions of QTL effects were fitted with maximum likelihood. The derived distributions were moderately leptokurtic, consistent with many genes of small effect and few of large effect. Seventeen percent and 35% of the leading QTL explained 90% of the genetic variance for the dairy and pig distributions respectively. The number of segregating genes affecting a quantitative trait in dairy populations was predicted assuming genes affecting a quantitative trait were neutral with respect to fitness. Between 50 and 100 genes were predicted, depending on the effective population size assumed. As data for the analysis included no QTL of small effect, the ability to estimate the number of QTL of small effect must inevitably be weak. It may be that there are more QTL of small effect than predicted by our gamma distributions. Nevertheless, the distributions have important implications for QTL mapping experiments and Marker Assisted Selection (MAS). Powerful mapping experiments, able to detect QTL of 0.1σp, will be required to detect enough QTL to explain 90% the genetic variance for a quantitative trait.  相似文献   

10.
Quantitative trait locus (QTL) mapping studies often employ segregating generations derived from a cross between genetically divergent inbred lines. In the analysis of such data it is customary to fit a single QTL and use a null hypothesis which assumes that the genomic region under study contributes no genetic variance. To explore the situation in which multiple linked genes contribute to the genetic variance, we simulated an F2-mapping experiment in which the genetic difference between the two original inbred strains was caused by a large number of loci, each having equal effect on the quantitative trait. QTLs were either in coupling, dispersion or repulsion phase in the base population of inbred lines, with the expected F2 genetic variance explained by the QTLs being equivalent in the three models. Where QTLs were in coupling phase, one inbred line was fixed for all plus alleles, and the other line was fixed for minus alleles. Where QTLs were in dispersion phase, they were assumed to be randomly fixed for one or other allele (as if the inbred lines had evolved from a common ancestor by random drift). Where QTLs were in repulsion phase alleles within an inbred line were alternating plus and minus at adjacent loci, and alternative alleles were fixed in the two inbred lines. In all these genetic models a standard interval mapping test statistic used to determine whether there is a QTL of large effect segregating in the population was inflated on average. Furthermore, the use of a threshold for QTL detection derived under the assumption that no QTLs were segregating would often lead to spurious conclusions regards the presence of genes of large effects (i.e. type I errors). The employment of an alternative model for the analysis, including linked markers as cofactors in the analysis of a single interval, reduced the problem of type I error rate, although test statistics were still inflated relative to the case of no QTLs. It is argued that in practice one should take into account the difference between the strains or the genetic variance in the F2 population when setting significance thresholds. In addition, tests designed to probe the adequacy of a single-QTL model or of an alternative infinitesimal coupling model are described. Such tests should be applied in QTL mapping studies to help dissect the true nature of genetic variation.  相似文献   

11.
基于CSSL的水稻抽穗期QTL定位及遗传分析   总被引:1,自引:0,他引:1  
抽穗期是水稻(Oryza sativa)品种的重要农艺性状之一, 适宜的抽穗期是获得理想产量的前提。鉴定和定位水稻抽穗期基因/QTL, 分析其遗传效应对改良水稻抽穗期至关重要。以籼稻品种9311(Oryza sativa ssp. indica ‘Yangdao 6’)为受体,粳稻品种日本晴(Oryza sativa ssp. japonica ‘Nipponbare’)为供体构建的94个染色体片段置换系群体为材料, 以P≤0.01为阈值, 对置换片段上的抽穗期QTL进行了鉴定。采用代换作图法共定位了4个控制水稻抽穗期的QTL, 分别位于第3、第4、第5和第8染色体; QTL的加性效应值变化范围为–6.4 – –2.7, 加性效应百分率变化范围为–6.4%– –2.7%; qHD-3和qHD-8加性效应值较大, 表现主效基因特征。为了进一步定位qHD-3和qHD-8, 在目标区域加密16对SSR引物, qHD-3和qHD-8分别被界定在第3染色体RM3166–RM16206之间及第8染色体RM4085-RM8271之间, 其遗传距离分别为13.9 cM和6.4 cM。研究结果为利用分子标记辅助选择改良水稻抽穗期奠定了基础。  相似文献   

12.
抽穗期是水稻(Oryza sativa)品种的重要农艺性状之一,适宜的抽穗期是获得理想产量的前提。鉴定和定位水稻抽穗期基因/QTL,分析其遗传效应对改良水稻抽穗期至关重要。以籼稻品种9311(Oryzasativa ssp.indica‘Yangdao 6’)为受体,粳稻品种日本晴(Oryza sativa ssp.japonica‘Nipponbare’)为供体构建的94个染色体片段置换系群体为材料,以P≤0.01为阈值,对置换片段上的抽穗期QTL进行了鉴定。采用代换作图法共定位了4个控制水稻抽穗期的QTL,分别位于第3、第4、第5和第8染色体;QTL的加性效应值变化范围为–6.4––2.7,加性效应百分率变化范围为–6.4%––2.7%;qHD-3和qHD-8加性效应值较大,表现主效基因特征。为了进一步定位qHD-3和qHD-8,在目标区域加密16对SSR引物,qHD-3和qHD-8分别被界定在第3染色体RM3166–RM16206之间及第8染色体RM4085–RM8271之间,其遗传距离分别为13.9cM和6.4cM。研究结果为利用分子标记辅助选择改良水稻抽穗期奠定了基础。  相似文献   

13.
Orobanche crenata Forsk. is a root parasite that produces devastating effects on many crop legumes and has become a limiting factor for faba bean production in the Mediterranean region. The efficacy of available control methods is minimal and breeding for broomrape resistance remains the most promising method of control. Resistance seems to be scarce and complex in nature, being a quantitative characteristic difficult to manage in breeding programmes. To identify and map the QTLs (quantitative trait loci) controlling the trait, 196 F2 plants derived from the cross between a susceptible and a resistant parent were analysed using isozymes, RAPD, seed protein genes, and microsatellites. F2-derived F3 lines were studied for broomrape resistance under field conditions. Of the 130 marker loci segregating in the F2 population, 121 could be mapped into 16 linkage groups. Simple interval mapping (SIM) and composite interval mapping (CIM) were performed using QTL Cartographer. Composite interval mapping using the maximum number of markers as cofactors was clearly the most efficient way to locate putative QTLs. Three QTLs for broomrape resistance were detected. One of the three QTLs explained more than 35% of the phenotypic variance, whereas the others accounted for 11.2 and 25.5%, respectively. This result suggests that broomrape resistance in faba bean can be considered a polygenic trait with major effects of a few single genes.  相似文献   

14.
Solanum pennellii LA716, a wild relative of tomato, produces acylsugars, an insect resistance compound with activity against many tomato insect pests. Breeding of cultivated tomato using S. pennellii LA716 as a donor parent has led to the development of the elite acylsugar-producing tomato breeding line CU071026. CU071026 contains five introgressed S. pennellii genomic regions, and produces acylsugars at moderate levels that are effective against insect pests. A BC1F1 population was created by crossing the F1 CU071026?×?S. pennellii LA716 with CU071026 as the recurrent parent; this BC1F1 population was used to identify additional regions of the S. pennellii genome important for further improvement of acylsugar production. This population was genotyped with 94 markers in the segregating regions and phenotyped for level of acylsugar production. Using QTLNetwork 2.1 for the detection of quantitative trait loci (QTL) and epistatic interactions, this study identified five QTL for total acylsugar level. Additionally, two epistatic interactions between QTL were found to control significant levels of total acylsugar production. Two of the QTL identified were further evaluated in silverleaf whitefly (Bemisia tabaci) field cage trials using acylsugar breeding lines that differ for the presence/absence of these QTL. While high levels of silverleaf whitefly resistance were observed in all acylsugar breeding lines, lines containing the additional QTL on either chromosomes 6 or 10 had increased levels of total acylsugar production and reduced incidence of whitefly. Acylsugar lines containing the chromosome 6 QTL also had increased density of the type IV glandular trichomes which produce and exude acylsugars.  相似文献   

15.
Quantitative trait locus (QTL) mapping is a valuable new tool for locating genomic regions that underlie variation in important traits such as insecticide resistance. Because QTL mapping complements a candidate gene strategy for understanding the genetic architecture of important traits, it may also facilitate the identification of genes causing important variation. After mapping the QTL locations, markers closely linked to QTL can be used for genetic analysis of population structure and to measure the spread and increase of resistance-causing QTL alleles. In this study, QTL influencing resistance to the pyrethroid insecticide esfenvalerate were mapped in the Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB). Three QTL contributing to esfenvalerate resistance were identified from a mapping population of 79 individuals analyzed at 90 marker loci. One QTL had a large effect and two QTL had smaller effects. The major QTL occurs on the X chromosome, overlapping the position of a candidate gene (Leptinotarsa decemlineata Voltage sensitive sodium channel [LdVssc1]) previously implicated in pyrethroid resistance. Resistance-increasing alleles at the two minor-effect QTL originated with the susceptible parent, suggesting that alleles of small effect may be segregating in susceptible populations. Comparison of the New York population from which the susceptible parent originated with a more-susceptible population from North Carolina suggests that the minor-effect loci identified here may explain some of the variation in tolerance observed among susceptible populations. DNA sequencing of a portion of LdVssc1 shows that the resistance-conferring allele from the resistant parent does not contain the kdr mutation previously found in CPB and typically observed in other insects that are resistant to pyrethroid insecticides because of changes in this gene.  相似文献   

16.
Wilson RH  Morgan TJ  Mackay TF 《Genetics》2006,173(3):1455-1463
Limited life span and senescence are near-universal characteristics of eukaryotic organisms, controlled by many interacting quantitative trait loci (QTL) with individually small effects, whose expression is sensitive to the environment. Analyses of mutations in model organisms have shown that genes affecting stress resistance and metabolism affect life span across diverse taxa. However, there is considerable segregating variation for life span in nature, and relatively little is known about the genetic basis of this variation. Replicated lines of Drosophila that have evolved increased longevity as a correlated response to selection for postponed senescence are valuable resources for identifying QTL affecting naturally occurring variation in life span. Here, we used deficiency complementation mapping to identify at least 11 QTL on chromosome 3 that affect variation in life span between five old (O) lines selected for postponed senescence and their five base (B) population control lines. Most QTL were sex specific, and all but one affected multiple O lines. The latter observation is consistent with alleles at intermediate frequency in the base population contributing to the response to selection for postponed senescence. The QTL were mapped with high resolution and contained from 12 to 170 positional candidate genes.  相似文献   

17.
QTL: their place in engineering tolerance of rice to salinity   总被引:11,自引:0,他引:11  
Secondary salinization and its relationship to irrigation are strong incentives to improve the tolerance of crops to salinity and to drought. Achieving this through the pyramiding of physiological traits (phenotypic selection without knowledge of genotype) is feasible. However, wide application of this approach is limited by the practicalities of assessing not only the parents, but also large numbers of individuals and families in segregating generations. Genotypic information is required in the form of markers for any quantitative trait loci involved (marker-assisted selection) or of direct knowledge of the genes. In the absence of adequate candidate genes for salt tolerance, a quantitative trait locus/marker-assisted selection approach has been used here. Putative markers for ion transport and selectivity, identified from analysis of amplified fragment length polymorphism, had been discovered within a custom-made mapping population of rice. Here it is reported that none of these markers showed any association with similar traits in a closely related population of recombinant inbred lines or in selections of a cultivar. Whilst markers will be of value in using élite lines from the mapping population in backcrossing, this has to be considered alongside the effort required to develop and map any given population. This result cautions against any expectation of a general applicability of markers for physiological traits. It is concluded that direct knowledge of the genes involved is needed. This cannot be achieved at present by positional cloning. The elucidation of candidate genes is required. Here the problem lies not in the analysis of gene expression but in devising protocols in which only those genes of interest are differentially affected by the experimental treatments.  相似文献   

18.
We have mapped quantitative trait loci (QTL) harboring naturally occurring allelic variation for Drosophila bristle number. Lines with high (H) and low (L) sternopleural bristle number were derived by artificial selection from a large base population. Isogenic H and L sublines were extracted from the selection lines, and populations of X and third chromosome H/L recombinant isogenic lines were constructed in the homozygous low line background. The polymorphic cytological locations of roo transposable elements provided a dense molecular marker map with an average intermarker distance of 4.5 cM. Two X chromosome and six chromosome 3 QTL affecting response to selection for sternopleural bristle number and three X chromosome and three chromosome 3 QTL affecting correlated response in abdominal bristle number were detected using a composite interval mapping method. The average effects of bristle number QTL were moderately large, and some had sex-specific effects. Epistasis between QTL affecting sternopleural bristle number was common, and interaction effects were large. Many of the intervals containing bristle number QTL coincided with those mapped in previous studies. However, resolution of bristle number QTL to the level of genetic loci is not trivial, because the genomic regions containing bristle number QTL often did not contain obvious candidate loci, and results of quantitative complementation tests to mutations at candidate loci affecting adult bristle number were ambiguous.  相似文献   

19.
Summary Many studies have shown that segregating quantitative trait loci (QTL) can be detected via linkage to genetic markers. Power to detect a QTL effect on the trait mean as a function of the number of individuals genotyped for the marker is increased by selectively genotyping individuals with extreme values for the quantitative trait. Computer simulations were employed to study the effect of various sampling strategies on the statistical power to detect QTL variance effects. If only individuals with extreme phenotypes for the quantitative trait are selected for genotyping, then power to detect a variance effect is less than by random sampling. If 0.2 of the total number of individuals genotyped are selected from the center of the distribution, then power to detect a variance effect is equal to that obtained with random selection. Power to detect a variance effect was maximum when 0.2 to 0.5 of the individuals selected for genotyping were selected from the tails of the distribution and the remainder from the center.  相似文献   

20.
We report the identification of quantitative trait loci (QTL) influencing wood specific gravity (WSG) in an outbred pedigree of loblolly pine (Pinus taeda L.). QTL mapping in an outcrossing species is complicated by the presence of multiple alleles (>2) at QTL and marker loci. Multiple alleles at QTL allow the examination of interaction among alleles at QTL (deviation from additive gene action). Restriction fragment length polymorphism (RFLP) marker genotypes and wood specific gravity phenotypes were determined for 177 progeny. Two RFLP linkage maps were constructed, representing maternal and paternal parent gamete segregations as inferred from diploid progeny RFLP genotypes. RFLP loci segregating for multiple alleles were vital for aligning the two maps. Each RFLP locus was assayed for cosegregation with WSG QTL using analysis of variance (ANOVA). Five regions of the genome contained one or more RFLP loci showing differences in mean WSG at or below the P = 0.05 level for progeny as grouped by RFLP genotype. One region contained a marker locus (S6a) whose QTL-associated effects were highly significant (P > 0.0002). Marker S6a segregated for multiple alleles, a prerequisite for determining the number of alleles segregating at the linked QTL and analyzing the interactions among QTL alleles. The QTL associated with marker S6a appeared to be segregating for multiple alleles which interacted with each other and with environments. No evidence for digenic epistasis was found among the five QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号