首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Sr2ZnWO6 phosphors co‐doped with Eu3+, Bi3+ and Li+ were prepared using the Pechini method. The samples were tested using X‐ray diffraction and luminescence spectroscopy. The results show that the samples can be effectively excited by near‐ultraviolet (UV) and UV light. The introduction of Bi3+ and Li+ significantly enhances the fluorescence emission of Sr2ZnWO6:Eu3+ and changes the light emitted by the phosphors from bluish‐green to white. When excited at 371 nm, Sr2–x–zZn1–yWO6:xEu3+,yBi3+,zLi+ (x = 0.05, y = 0.05, z = 0.05, 0.1 and 0.15) samples emit high‐performance white light. Intense red–orange emission is also observed when excited by UV light. The obtained phosphor is a potential white‐emitting phosphor that could meet the needs of excitation sources with near‐UV chips. In addition, this phosphor might have promising application as a red–orange emitting phosphor for white light‐emitting diodes based on UV light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A yellow‐emitting phosphor NaY(MoO4)2:Dy3+ was synthesized using a solid‐state reaction at 550 °C for 4 h, and its luminescent properties were investigated. Its phase formation was studied using X‐ray powder diffraction analysis, and there were no crystalline phases other than NaY(MoO4)2. NaY(MoO4)2:Dy3+ produced yellow emission under 386 or 453 nm excitation, and the prominent luminescence was yellow (575 nm) due to the 4 F9/26H13/2 transition of Dy3+. For the 575 nm emission, the excitation spectrum had one broad band and some narrow peaks; the peaks were located at 290, 351, 365, 386, 426, 453 and 474 nm. Emission intensities were influenced by the Dy3+ doping content and a concentration quenching effect was observed; the phenomenon was also proved by the decay curves. Moreover, the Commission International de I'Eclairage chromaticity coordinates of NaY(MoO4)2:Dy3+ showed similar values at different Dy3+ concentrations, and were located in the yellow region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Ca3SiO4Cl2 co‐doped with Ce3+,Eu2+ was prepared by high temperature reaction. The structure, luminescent properties and the energy transfer process of Ca3SiO4Cl2: Ce3+,Eu2+ were investigated. Eu2+ ions can give enhanced green emission through Ce3+ → Eu2+ energy transfer in these phosphors. The green phosphor Ca2.9775SiO4Cl2:0.0045Ce3+,0.018Eu2+ showed intense green emission with broader excitation in the near‐ultraviolet light range. A green light‐emitting diode (LED) based on this phosphor was made, and bright green light from this green LED could be observed by the naked eye under 20 mA current excitation. Hence it is considered to be a good candidate for the green component of a three‐band white LED. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Sr3MgSi2O8:Ce3+, Dy3+ phosphors were prepared by a solid‐state reaction technique and the photoluminescence properties were investigated. The emission spectra show not only a band due to Ce3+ ions (403 nm) but also as a band due to Dy3+ ions (480, 575 nm) (UV light excitation). The photoluminescence properties reveal that effective energy transfer occurs in Ce3+/Dy3+ co‐doped Sr3MgSi2O8 phosphors, and the co‐doping of Ce3+ could enhance the emission intensity of Dy3+ to a certain extent by transferring its energy to Dy3+. The Ce3+/Dy3+ energy transfer was investigated by emission/excitation spectra, and photoluminescence decay behaviors. In Sr2.94MgSi2O8:0.01Ce3+, 0.05Dy3+ phosphors, the fluorescence lifetime of Dy3+ (from 3.35 to 27.59 ns) is increased whereas that of Ce3+ is greatly decreased (from 43.59 to 13.55 ns), and this provides indirect evidence of the Ce3+ to Dy3+ energy transfer. The varied emitted color of Sr3MgSi2O8:Ce3+, Dy3+ phosphors from blue to white were achieved by altering the concentration ratio of Ce3+ and Dy3+. These results indicate Sr3MgSi2O8:Ce3+, Dy3+ may be as a candidate phosphor for white light‐emitting diodes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
6.
In order to obtain reliability information for a white organic light‐emitting diode (OLED), two constant and one step stress tests were conducted with its working current increased. The Weibull function was applied to describe the OLED life distribution, and the maximum likelihood estimation (MLE) and its iterative flow chart were used to calculate shape and scale parameters. Furthermore, the accelerated life equation was determined using the least squares method, a Kolmogorov–Smirnov test was performed to assess if the white OLED life follows a Weibull distribution, and self‐developed software was used to predict the average and the median lifetimes of the OLED. The numerical results indicate that white OLED life conforms to a Weibull distribution, and that the accelerated life equation completely satisfies the inverse power law. The estimated life of a white OLED may provide significant guidelines for its manufacturers and customers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
CdTe quantum dots, 3.28 nm in size, were synthesized using a one‐step method in an aqueous medium. The CdTe quantum dots were successfully employed as hybrid phosphors for white light‐emitting diode (LED) devices by combining them with yellow‐emitting YAG:Ce phosphor. The color‐rendering index value and International Commission on illumination coordinates for hybrid phosphor white LEDs were 75 and (x = 0.30, y = 0.29), respectively. Compared with conventional phosphors, semiconductor quantum dots have larger band gap energy and broader absorption features, and can be excited more efficiently by optical pumping sources. The results confirmed that the high color‐rendering index value of the white LED was due to the CdTe quantum dots introduced in the hybrid phosphor system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This work reports the photoluminescence properties of Ca3Mg3(PO4)4:Sm3+ phosphors that were synthesized by the combustion method. The phase formation and morphology of the prepared phosphors were analysed by X‐ray diffraction studies and scanning electron microscopy. Ca3Mg3(PO4)4:Sm3+ phosphors give orange light emission when excited by near‐ultraviolet (NUV) and blue light. The photoluminescence characteristics of the as‐prepared phosphors were investigated and their emission spectra showed three peaks due to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions. The mechanism responsible for the concentration quenching of luminescence was found to be an electric dipole–dipole interaction. The CIE chromaticity coordinates suggested that the prepared phosphors are potential candidates for orange light‐emitting diodes (LEDs).  相似文献   

9.
Dysprosium ion (Dy3+) activated Ba2CaZn2Si6O17 phosphors were synthesized using high temperature solid‐state reaction method. Powder X‐ray diffraction (PXRD) analysis confirmed the phase formation of the as‐prepared phosphors. Scanning electron microscopy (SEM) analysis disclosed an agglomeration of particles with an irregular morphology. Under 350 nm excitation, the emission spectrum of Dy3+ ions showed bands at 481 nm (blue), 577 nm (yellow) and 674 nm (red). The influence of the Dy3+ concentration on its emission intensity was investigated. The optimum concentration of Dy3+ ions in the Ba2CaZn2Si6O17:Dy3+ phosphors were found to be x = 0.06. The critical energy transfer distance was calculated. The fluorescence lifetime was also determined for Ba2CaZn2Si6O17:0.06Dy3+. The Commission International deI’Eclairage (CIE) chromaticity coordinates of the phosphor were calculated to be x = 0.304, y = 0.382. The activation energy for the thermal quenching was calculated to be 0.168 eV. These results indicated that the Ba2CaZn2Si6O17:Dy3+ phosphor might be a potential candidate for near ultraviolet (NUV)‐based white light‐emitting diodes.  相似文献   

10.
Two blue emitters based on fluorene‐bridged quinazoline and quinoxaline derivatives were prepared via the Suzuki reaction. Their photoluminescent properties were investigated. Furthermore, theoretical studies on these materials using the density functional theory calculation were conducted. To explore their electroluminescent properties, multilayered organic light‐emitting diodes were fabricated with the following device structure: indium–tin–oxide (180 nm)/4,4′‐bis(N‐(1‐naphthyl)‐N‐phenylamino)biphenyl (50 nm)/blue emitting materials ( 1 and 2 ) (30 nm)/bathophenanthroline (35 nm)/8‐hydroxy‐quinolinato lithium (2 nm)/Al (100 nm). Two devices showed efficient blue emission with the external quantum efficiencies of 1.58% and 1.30%, respectively, at 20 mA/cm2, and Commission Internationale dÉclairage coordinates of (0.18, 0.24) and (0.19, 0.27) at 6.0 V. These results suggest that the self‐aggregation properties of emitters would have considerable effects on their photoluminescent and electroluminescent properties.  相似文献   

11.
Dy3+‐doped CaAl12O19 phosphors were synthesized utilizing a combustion method. Crystal structure and morphological examinations were performed respectively using X‐ray diffraction (XRD) and scanning electron microscopy (SEM) techniques to identify the phase and morphology of the synthesized samples. Fourier transform infrared spectroscopy (FTIR) estimations were carried out using the KBr method. Photoluminescence properties (excitation and emission) were recorded at room temperature. CaAl12O19:Dy3+ phosphor showed two emission peaks respectively under a 350‐nm excitation wavelength, centered at 477 nm and 573 nm. Dipole–dipole interaction via nonradiative energy shifting has been considered as the major cause of concentration quenching when Dy3+ concentration was more than 3 mol%. The CIE chromaticity coordinates positioned at (0.3185, 0.3580) for the CaAl12O19:0.03Dy3+ phosphor had a correlated color temperature (CCT) of 6057 K, which is situated in the cool white area. Existing results point out that the CaAl12O19:0.03Dy3+ phosphor could be a favorable candidate for use in white light‐emitting diodes (WLEDs).  相似文献   

12.
K2TiF6:Mn4+ red phosphors with different Mn4+ doping concentrations were obtained using the co‐precipitation method. X‐Ray diffraction, scanning electron microscopy, Raman spectra, Fourier transform infrared spectroscopy, photoluminescence excitation and emission spectra and decay curves were used to characterize the properties of K2TiF6:Mn4+ phosphors. Under excitation at 470 nm, an intense red emission peak around 631 nm corresponding to the 2Eg4A2 transition of Mn4+ was observed for 2.48 mol% K2TiF6:Mn4+ phosphors and was used as the optimum doping concentration. The excellent luminescent properties of K2TiF6:Mn4+ suggest that this material might be a promising red phosphor for generating warm white light in phosphor‐converted white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A series of Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors was synthesized via a co‐precipitation method, then their crystal structure, quantum efficiency and luminescent properties were analyzed by XRD and FL, respectively. The results showed that these phosphors not only presented the excitation characteristics of Ba2P2O7:xEu2+,zTb3+, but also exhibited that of the Ba2P2O7:yCe3+,zTb3+ phosphor. Meanwhile, the tri‐doped phosphor showed a stronger absorption around 320 nm in contrast with the Eu2+/Ce3+:Tb3+ co‐doped phosphor. Not only can energy transfer from Ce3+→Eu2+ be observed; the energy transfer mechanism from Eu2+ to Tb3+ is discussed in the tri‐doped system. Ce3+ affects the luminescence properties of Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors just as the sensitizer whereas Eu2+ is considered both as the sensitizer and the activator. The chromaticity coordinates of tri‐doped phosphors excited at 320 nm stayed steadily in the bluish‐white light region,and the emitted color and color temperature (CCT) of these phosphors could be tuned by adjusting the relative contents of Eu2+, Ce3+ and Tb3+. Hence, the single phase Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors may be considered as potential candidates for white light‐emitting diodes.  相似文献   

14.
The luminescent properties of europium (Eu)‐ and dysprosium (Dy)‐co‐doped K3Ca2(SO4)3Cl halosulfate phosphors were analyzed. This paper reports the photoluminescence (PL) properties of K3Ca2(SO4)3Cl microphosphor doped with Eu and Dy and synthesized using a cost‐effective wet chemical method. The phosphors were characterized by X‐ray diffraction and scanning electron microscopy. The CIE coordinates were calculated to display the color of the phosphor. PL emission of the prepared samples show peaks at 484 nm (blue), 575 nm (yellow), 594 nm (orange) and 617 nm (red). The emission color of the Eu,Dy‐co‐doped K3Ca2(SO4)3Cl halophosphor depends on the doping concentration and excitation wavelength. The addition of Eu in K3Ca2(SO4)3Cl:Dy greatly enhances the intensity of the blue and yellow peaks, which corresponds to the 4 F9/26H15/2 and 4 F9/26H13/2 transitions of Dy3+ ions (under 351 nm excitation). The Eu3+/Dy3+ co‐doping also produces white light emission for 1 mol% of Eu3+, 1 mol% of Dy3+ in the K3Ca2(SO4)3Cl lattice under 396 nm excitation, for which the calculated chromaticity coordinates are (0.35, 0.31). Thus, K3Ca2(SO4)3Cl co‐doped with Eu/Dy is a suitable candidate for NUV based white light‐emitting phosphors technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Yongfu Teng 《Luminescence》2019,34(4):432-436
In the Ba9Lu2Si6O24 (BLS) host, Ce3+ shows cyan emissions peaking at 490 nm under 400 nm excitations. BLS:Tb3+ only can be effectively excited by 254 nm light and gives rise to green emissions at 553 nm. However, both the cyan and green emissions can be obtained in BLS:Ce3+,Tb3+ under 400 nm excitations due to effective energy transfers from Ce3+ to Tb3+. BLS:Mn2+ shows red emissions peaking at 610 nm under 414 nm excitations. By co‐doping Ce3+, Tb3+ and Mn2+, tunable full‐color emissions were obtained. The BLS:0.3Ce3+,0.6Tb3+,0.15Mn2+ single phosphor exhibits a white light with a high color rendering index of 85 and a correlated color temperature of 5480 K under 400 nm excitation.  相似文献   

16.
Eu2+‐doped Sr2SiO4 phosphor with Ca2+/Zn2+ substitution, (Sr1–xMx)2SiO4:Eu2+ (M = Ca, Zn), was prepared using a high‐temperature solid‐state reaction method. The structure and luminescence properties of Ca2+/Zn2+ partially substituted Sr2SiO4:Eu2+ phosphors were investigated in detail. With Ca2+ or Zn2+ added to the silicate host, the crystal phase could be transformed between the α‐form and the β‐form of the Sr2SiO4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f65d1 → 4f7 transition of Eu2+ ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu2+ ions occupying the ten‐fold oxygen‐coordinated Sr.(I) site and the nine‐fold oxygen‐coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr2SiO4:Eu2+ phosphors, improved remarkably on Ca2+/Zn2+ addition, and promote its application in white light‐emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Ageing and alteration of the functions of the retinal pigment epithelium (RPE) are at the origin of lost of vision seen in age‐related macular degeneration (AMD). The RPE is known to be vulnerable to high‐energy blue light. The white light‐emitting diodes (LED) commercially available have relatively high content of blue light, a feature that suggest that they could be deleterious for this retinal cell layer. The aim of our study was to investigate the effects of “white LED” exposure on RPE. For this, commercially available white LEDs were used for exposure experiments on Wistar rats. Immunohistochemical stain on RPE flat mount, transmission electron microscopy and Western blot were used to exam the RPE. LED‐induced RPE damage was evaluated by studying oxidative stress, stress response pathways and cell death pathways as well as the integrity of the outer blood–retinal barrier (BRB). We show that white LED light caused structural alterations leading to the disruption of the outer blood–retinal barrier. We observed an increase in oxidized molecules, disturbance of basal autophagy and cell death by necrosis. We conclude that white LEDs induced strong damages in rat RPE characterized by the breakdown of the BRB and the induction of necrotic cell death.  相似文献   

18.
Cr3+‐doped Y2O3 (0.5–9 mol%) was synthesized by a simple solution combustion method using Aloe vera gel as a fuel/surfactant. The final obtained product was calcined at 750°C for 3 h, which is the lowest temperature reported so far for the synthesis of this compound. The calcined product was confirmed for its crystallinity and purity by powder X‐ray diffraction (PXRD) studies which showed a single‐phase nano cubic phosphor. The particles size estimated by Scherrer formula was in the range of 6–19 nm. The UV–vis spectra showed absorption bands at 198, 272 and 372 nm having band gap energy in the range 4.00–4.26 eV. In order to investigate the possibility of its use in white light emitting display applications, the photoluminescence properties of Cr3+‐doped Y2O3 nanophosphors were studied at an excitation wavelength in the near ultraviolet (UV) light region (361 nm). The emission spectra consisted of emission peaks in the blue (4F9/2 → 6H15/2), orange (4F9/2 → 6H13/2) and red (4F9/2 → 6H11/2) regions. The CIE coordinates (0.33, 0.33) lie in the white light region. Hence Y2O3:Cr3+ can be used for white light‐emitting diode (LED) applications.  相似文献   

19.
A series of Ca2Mg0.25Al1.5Si1.25O7:Ce3+/Eu2+/Tb3+ phosphors was been prepared via a conventional high temperature solid‐state reaction and their luminescence properties were studied. The emission spectra of Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+ and Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Tb3+ phosphors show not only a band due to Ce3+ ions (409 nm) but also as a band due to Eu2+ (520 nm) and Tb3+ (542 nm) ions. More importantly, the effective energy transfer from Ce3+ to Eu2+ and Tb3+ ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole–dipole (Ce3+ to Eu2+) and dipole–quadrupole (Ce3+ to Tb3+) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce3+ and Eu2+ ions as well as Ce3+ and Tb3+ ions. The above results indicate that Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+/Tb3+ are promising single‐phase blue‐to‐green phosphors for application in phosphor conversion white‐light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Sr3(PO4)2:Dy3+,Li+ phosphors were prepared using a simple high temperature solid method for luminescence enhancement. The structures of the as‐prepared samples agreed well with the standard phase of Sr3(PO4)2, even when Dy3+ and Li+ were introduced. Under ultraviolet excitation at 350 nm, the Sr3(PO4)2:Dy3+ sample exhibited two emission peaks at 483 nm and 580 nm, which were due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. A white light was fabricated using these two emissions from the Sr3(PO4)2:Dy3+ phosphors. The luminescence properties of Sr3(PO4)2:Dy3+,Li+ phosphors, including emission intensity and decay time, were improved remarkably with the addition of Li+ as the charge compensator, which would promote their application in near‐ultraviolet excited white‐light‐emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号