首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the impact of spontaneous mutations on fitness has many theoretical and practical applications in biology. Although mutational effects on individual morphological or life‐history characters have been measured in several classic genetic model systems, there are few estimates of the rate of decline due to mutation for complex fitness traits. Here, we estimate the effects of mutation on competitive ability, an important complex fitness trait, in a model system for ecological and evolutionary genomics, Daphnia. Competition assays were performed to compare fitness between mutation‐accumulation (MA) lines and control lines from eight different genotypes from two populations of Daphnia pulicaria after 30 and 65 generations of mutation accumulation. Our results show a fitness decline among MA lines relative to controls as expected, but highlight the influence of genomic background on this effect. In addition, in some assays, MA lines outperform controls providing insight into the frequency of beneficial mutations.  相似文献   

2.
Recent mutation accumulation results from invertebrate species suggest that mild deleterious mutation is far less frequent than previously thought, implying smaller expressed mutational loads. Although the rate (lambda) and effect (s) of very slight deleterious mutation remain unknown, most mutational fitness decline would come from moderately deleterious mutation (s approximately 0.2, lambda approximately 0.03), and this situation would not qualitatively change in harsh environments. Estimates of the average coefficient of dominance (h) of non-severe deleterious mutations are controversial. The typical value of h = 0.4 can be questioned, and a lower estimate (about 0.1) is suggested. Estimated mutational parameters are remarkably alike for morphological and fitness component traits (excluding lethals), indicating low mutation rates and moderate mutational effects, with a distribution generally showing strong negative asymmetry and little leptokurtosis. New mutations showed considerable genotype-environment interaction. However, the mutational variance of fitness-component traits due to non-severe detrimental mutations did not increase with environmental harshness. For morphological traits, a class of predominantly additive mutations with no detectable effect on fitness and relatively small effect on the trait was identified. This should be close to that responsible for standing variation in natural populations.  相似文献   

3.
Comparing Mutational Variabilities   总被引:20,自引:10,他引:10       下载免费PDF全文
D. Houle  B. Morikawa    M. Lynch 《Genetics》1996,143(3):1467-1483
We have reviewed the available data on V(M), the amount of genetic variation in phenotypic traits produced each generation by mutation. We use these data to make several qualitative tests of the mutation-selection balance hypothesis for the maintenance of genetic variance (MSB). To compare V(M) values, we use three dimensionless quantities: mutational heritability, V(M)/V(E); the mutational coefficient of variation, CV(M); and the ratio of the standing genetic variance to V(M), V(G)/V(M). Since genetic coefficients of variation for life history traits are larger than those for morphological traits, we predict that under MSB, life history traits should also have larger CV(M). This is confirmed; life history traits have a median CV(M) value more than six times higher than that for morphological traits. V(G)/V(M) approximates the persistence time of mutations under MSB in an infinite population. In order for MSB to hold, V(G)/V(M) must be small, substantially less than 1000, and life history traits should have smaller values than morphological traits. V(G)/V(M) averages about 50 generations for life history traits and 100 generations for morphological traits. These observations are all consistent with the predictions of a mutation-selection balance model.  相似文献   

4.
Keightley PD  Davies EK  Peters AD  Shaw RG 《Genetics》2000,156(1):143-154
The homozygous effects of ethylmethane sulfonate (EMS)-induced mutations in Caenorhabditis elegans are compared across life-history traits. Mutagenesis has a greater effect on early than late reproductive output, since EMS-induced mutations tend to cause delayed reproduction. Mutagenesis changes the mean and variance of longevity much less than reproductive output traits. Mutations that increase total or early productivity are not detected, but the net effect of mutations is to increase and decrease late productivity to approximately equal extents. Although most mutations decrease longevity, a mutant line with increased longevity was found. A flattening of mortality curves with age is noted, particularly in EMS lines. We infer that less than one-tenth of mutations that have fitness effects in natural conditions are detected in the laboratory, and such mutations have moderately large effects ( approximately 20% of the mean). Mutational correlations for life-history traits are strong and positive. Correlations between early or late productivity and longevity are of similar magnitude. We develop a maximum-likelihood procedure to infer bivariate distributions of mutation effects. We show that strong mutation-induced genetic correlations do not necessarily imply strong directional correlations between mutational effects, since correlation is also generated by lines carrying different numbers of mutations.  相似文献   

5.
Characteristics of the new phenotypic variation introduced via mutation have broad implications in evolutionary and medical genetics. Standardized estimates of this mutational variance, VM, span 2 orders of magnitude, but the causes of this remain poorly resolved. We investigated estimate heterogeneity using 2 approaches. First, meta-analyses of ∼150 estimates of standardized VM from 37 mutation accumulation studies did not support a difference among taxa (which differ in mutation rate) but provided equivocal support for differences among trait types (life history vs morphology, predicted to differ in mutation rate). Notably, several experimental factors were confounded with taxon and trait, and further empirical data are required to resolve their influences. Second, we analyzed morphological data from an experiment in Drosophila serrata to determine the potential for unintentional heterogeneity among environments in which phenotypes were measured (i.e. among laboratories or time points) or transient segregation of mutations within mutation accumulation lines to affect standardized VM. Approximating the size of an average mutation accumulation experiment, variability among repeated estimates of (accumulated) mutational variance was comparable to variation among published estimates of standardized VM. This heterogeneity was (partially) attributable to unintended environmental variation or within line segregation of mutations only for wing size, not wing shape traits. We conclude that sampling error contributed substantial variation within this experiment, and infer that it will also contribute substantially to differences among published estimates. We suggest a logistically permissive approach to improve the precision of estimates, and consequently our understanding of the dynamics of mutational variance of quantitative traits.  相似文献   

6.
Shaw RG  Byers DL  Darmo E 《Genetics》2000,155(1):369-378
A study of spontaneous mutation in Arabidopsis thaliana was initiated from a single inbred Columbia founder; 120 lines were established and advanced 17 generations by single-seed descent. Here, we report an assay of reproductive traits in a random set of 40 lines from generations 8 and 17, grown together at the same time with plants representing generation 0. For three reproductive traits, mean number of seeds per fruit, number of fruits, and dry mass of the infructescence, the means did not differ significantly among generations. Nevertheless, by generation 17, significant divergence among lines was detected for each trait, indicating accumulation of mutations in some lines. Standardized measures of mutational variance accord with those obtained for other organisms. These findings suggest that the distribution of mutational effects for these traits is approximately symmetric, in contrast to the usual assumption that mutations have predominantly negative effects on traits directly related to fitness. Because distinct generations were grown contemporaneously, each line was represented by three sublines, and seeds were equal in age, these estimates are free of potentially substantial sources of bias. The finding of an approximately symmetric distribution of mutational effects invalidates the standard approach for inferring properties of spontaneous mutation and necessitates further development of more general approaches that avoid restrictions on the distribution of mutational effects.  相似文献   

7.
Downie DA 《Genetica》2003,119(3):237-251
Mutation is the source of all genetic variation, but rate of input and effects of new mutations for phenotypic traits related to fitness and the role they play in the maintenance of genetic variation are still subject to controversy. These parameters are important in models of the evolution of sex and recombination, the persistence of asexual populations, and the extinction of small populations. Most estimates have come from a few model organisms. Here, mutation accumulation experiments were conducted with three clones of grape phylloxera, Daktulosphaira vitifoliae Fitch, a gall forming herbivore and pest of grapes, to estimate the rate of input and effects of spontaneous mutation on life history traits. This is perhaps the first such experiment using a non-model organism of economic importance. Significant heritable genetic variation accrued in one of three sets of lines for one of four traits measured, and deleterious effects of mutation were found for two of four traits in two of the three sets of lines. Estimates of the parameters by the Bateman–Mukai (BM) method were within the range found in previous studies but at the lower end for genomic mutation rate, U 0.023 and mutational variance, V M 0.0003, the upper end for average heterozygous effect, , of –0.11, and on the order of previous estimates for mutational heritability, h M 0.007. Under a model of equal effects of mutations, maximum likelihood (ML) estimates of U were slightly higher, and of lower, than the BM estimates. Support limits were too large to provide much confidence in the ML estimates, however, and models of mutational effects assuming a gamma distribution of effects under different values of the shape parameter, , could not be distinguished though likelihoods tended to be lower at lower values of (more leptokurtic). Rapid accumulation of deleterious mutations suggest that for many pest species, adaptive response under agricultural conditions may depend more on the standing variation derived from introductions than new mutation.  相似文献   

8.
Estes S  Ajie BC  Lynch M  Phillips PC 《Genetics》2005,170(2):645-653
The pattern of mutational covariance among traits plays a central, but largely untested, role in many theories in evolutionary genetics. Here we estimate the pattern of phenotypic, environmental, and mutational correlations for a set of life-history, behavioral, and morphological traits using 67 self-fertilizing lines of Caenorhabditis elegans, each having independently experienced an average of 370 generations of spontaneous mutation accumulation. Bivariate relationships of mutational effects indicate the existence of extensive pleiotropy. We find that mutations may tend to produce manifold effects on suites of functionally related traits; however, our data do not support the idea of completely parcelated pleiotropy, in which functional units are separately affected by mutations. Positive net phenotypic and mutational correlations are common for life-history traits, with environmental correlations being comparatively smaller and of the same sign for most pairs of traits. Observed mutational correlations are shown to be higher than those produced by the chance accumulation of nonpleiotropic mutations in the same lines.  相似文献   

9.
Mutations are the ultimate source of genetic diversity and their contributions to evolutionary process depend critically on their rate and their effects on traits, notably fitness. Mutation rate and mutation effect can be measured simultaneously through the use of mutation accumulation lines, and previous mutation accumulation studies measuring these parameters have been performed in laboratory conditions. However, estimation of mutation parameters for fitness in wild populations requires assays in environments where mutations are exposed to natural selection and natural environmental variation. Here we quantify mutation parameters in both the wild and greenhouse environments using 100 25th generation Arabidopsis thaliana mutation accumulation lines. We found significantly greater mutational variance and a higher mutation rate for fitness under field conditions relative to greenhouse conditions. However, our field estimates were low when scaled to natural environmental variation. Many of the mutation accumulation lines have increased fitness, counter to the expectation that nearly all mutations decrease fitness. A high mutation rate and a low mutational contribution to phenotypic variation may explain observed levels of natural genetic variation. Our findings indicate that mutation parameters are not fixed, but are variables whose values may reflect the specific environment in which mutations are tested.  相似文献   

10.
Keightley PD  Halligan DL 《Genetica》2009,136(2):359-369
Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V M ). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits. Surprisingly, most data on fitness traits from laboratory assays of MA lines indicate that the DEM is platykurtic in form (i.e., substantially less leptokurtic than an exponential distribution), and imply that most variation is produced by mutations of moderate to large effect. This finding contrasts with results from MA or mutagenesis experiments in which mutational changes to the DNA can be assayed directly, which imply that the vast majority of mutations have very small phenotypic effects, and that the distribution has a leptokurtic form. We compare these findings with recent approaches that attempt to infer the DEM for fitness based on comparing the frequency spectra of segregating nucleotide polymorphisms at putatively neutral and selected sites in population samples. When applied to data for humans and Drosophila, these analyses also indicate that the DEM is strongly leptokurtic. However, by combining the resultant estimates of parameters of the DEM with estimates of the mutation rate per nucleotide, the predicted V M for fitness is only a tiny fraction of V M observed in MA experiments. This discrepancy can be explained if we postulate that a few deleterious mutations of large effect contribute most of the mutational variation observed in MA experiments and that such mutations segregate at very low frequencies in natural populations, and effectively are never seen in population samples.  相似文献   

11.
The evolution of canalization, the robustness of the phenotype to environmental or genetic perturbation, has attracted considerable recent interest. A key step toward understanding the evolution of any phenotype is characterizing the rate at which mutation introduces genetic variation for the trait (the mutational variance, V(M)) and the average directional effects of mutations on the trait mean (DeltaM). In this study, the mutational parameters for canalization of productivity and body volume are quantified in two sets of mutation accumulation lines of nematodes in the genus Caenorhabditis and are compared with the mutational parameters for the traits themselves. Four results emerge: (1) spontaneous mutations consistently decanalize the phenotype; (2) the mutational parameters for decanalization, V(M) (quantified as mutational heritability) and DeltaM, are of the same order of magnitude as the same parameters for the traits themselves; (3) the mutational parameters for canalization are roughly correlated with the parameters for the traits themselves across taxa; and (4) there is no evidence that residual segregating overdominant loci contribute to the decay of canalization. These results suggest that canalization is readily evolvable and that any evolutionary factor that causes mutations to accumulate will, on average, decanalize the phenotype.  相似文献   

12.
We induced mutations in Drosophila melanogaster males by treating them with 21.2 mm ethyl methanesulfonate (EMS). Nine quantitative traits (developmental time, viability, fecundity, longevity, metabolic rate, motility, body weight, and abdominal and sternopleural bristle numbers) were measured in outbred heterozygous F3 (viability) or F2 (all other traits) offspring from the treated males. The mean values of the first four traits, which are all directly related to the life history, were substantially affected by EMS mutagenesis: the developmental time increased while viability, fecundity, and longevity declined. In contrast, the mean values of the other five traits were not significantly affected. Rates of recessive X-linked lethals and of recessive mutations at several loci affecting eye color imply that our EMS treatment was equivalent to approximately 100 generations of spontaneous mutation. If so, our data imply that one generation of spontaneous mutation increases the developmental time by 0.09% at 20 degrees and by 0.04% at 25 degrees, and reduces viability under harsh conditions, fecundity, and longevity by 1.35, 0.21, and 0.08%, respectively. Comparison of flies with none, one, and two grandfathers (or greatgrandfathers, in the case of viability) treated with EMS did not reveal any significant epistasis among the induced mutations.  相似文献   

13.
As the ultimate source of genetic variation, spontaneous mutation is essential to evolutionary change. Theoretical studies over several decades have revealed the dependence of evolutionary consequences of mutation on specific mutational properties, including genomic mutation rates, U, and the effects of newly arising mutations on individual fitness, s. The recent resurgence of empirical effort to infer these properties for diverse organisms has not achieved consensus. Estimates, which have been obtained by methods that assume mutations are unidirectional in their effects on fitness, are imprecise. Both because a general approach must allow for occurrence of fitness-enhancing mutations, even if these are rare, and because recent evidence demands it, we present a new method for inferring mutational parameters. For the distribution of mutational effects, we retain Keightley's assumption of the gamma distribution, to take advantage of the flexibility of its shape. Because the conventional gamma is one sided, restricting it to unidirectional effects, we include an additional parameter, rho, as an amount it is displaced from zero. Estimation is accomplished by Markov chain Monte Carlo maximum likelihood. Through a limited set of simulations, we verify the accuracy of this approach. We apply it to analyze data on two reproductive fitness components from a 17-generation mutation-accumulation study of a Columbia accession of Arabidopsis thaliana in which 40 lines sampled in three generations were assayed simultaneously. For these traits, U approximately/= 0.1-0.2, with distributions of mutational effects broadly spanning zero, such that roughly half the mutations reduce reproductive fitness. One evolutionary consequence of these results is lower extinction risks of small populations of A. thaliana than expected from the process of mutational meltdown. A comprehensive view of the evolutionary consequences of mutation will depend on quantitatively accounting for fitness-enhancing, as well as fitness-reducing, mutations.  相似文献   

14.
P. D. Keightley 《Genetics》1994,138(4):1315-1322
Parameters of continuous distributions of effects and rates of spontaneous mutation for relative viability in Drosophila are estimated by maximum likelihood from data of two published experiments on accumulation of mutations on protected second chromosomes. A model of equal mutant effects gives a poor fit to the data of the two experiments; higher likelihoods are obtained with leptokurtic distributions or for models in which there is more than one class of mutation effect. Minimum estimates of mutation rates (events per generation) at polygenes affecting viability on chromosome 2 are 0.14 and 0.068, but estimates are strongly confounded with other parameters in the model. Separate information on rates of molecular divergence between Drosophila species and from rates of movement of transposable elements is used to infer the overall genomic mutation rate in Drosophila, and the viability data are analyzed with mutation rate as a known parameter. If, for example, a mutation rate for chromosome 2 of 0.4 is assumed, maximum likelihood estimates of mean mutant effect on relative viability are 0.4% and 1%, but the majority of mutations have very much smaller effects than these values as distributions are highly leptokurtic. The methodology is applied to estimate viability effects of single P element insertional mutations. The mean effect per insertion is found to be higher, and their distribution is found to be less leptokurtic than for spontaneous mutations. The equilibrium genetic variance of viability predicted by a mutation-selection balance model with parameters estimated from the mutation accumulation experiments is similar to laboratory estimates of genetic variance of viability from natural populations of Drosophila.  相似文献   

15.
16.
P D Keightley 《Genetics》1998,150(3):1283-1293
The properties and limitations of maximum likelihood (ML) inference of genome-wide mutation rates (U) and parameters of distributions of mutation effects are investigated. Mutation parameters are estimated from simulated experiments in which mutations randomly accumulate in inbred lines. ML produces more accurate estimates than the procedure of Bateman and Mukai and is more robust if the data do not conform to the model assumed. Unbiased ML estimates of the mutation effects distribution parameters can be obtained if a value for U can be assumed, but if U is estimated simultaneously with the distribution parameters, likelihood may increase monotonically as a function of U. If the distribution of mutation effects is leptokurtic, the number of mutation events per line is large, or if genotypic values are poorly estimated, only a lower limit for U, an upper limit for the mean mutation effect, and a lower limit for the kurtosis of the distribution can be given. It is argued that such lower (upper) limits are appropriate minima (maxima). Estimates of the mean mutational effect are unbiased but may convey little about the properties of the distribution if it is leptokurtic.  相似文献   

17.
Shaw RG  Chang SM 《Genetics》2006,172(3):1855-1865
For a newly arising mutation affecting a trait under selection, its degree of dominance relative to the preexisting allele(s) strongly influences its evolutionary impact. We have estimated dominance parameters for spontaneous mutations in a subset of lines derived from a highly inbred founder of Arabidopsis thaliana by at least 17 generations of mutation accumulation (MA). The labor-intensive nature of the crosses and the anticipated subtlety of effects limited the number of MA lines included in this study to 8. Each MA line was selfed and reciprocally crossed to plants representing the founder genotype, and progeny were assayed in the greenhouse. Significant mutational effects on reproductive fitness included a recessive fitness-enhancing effect in one line and fitness-reducing effects, one additive and the other slightly recessive. Mutations conferring earlier phenology or smaller leaves were significantly recessive. For effects increasing leaf number and reducing height at flowering, additive gene action accounted for the expression of the traits. The sole example of a significantly dominant mutational effect delayed phenology. Our findings of recessive action of a fitness-enhancing mutational effect and additive action of a deleterious effect counter a common expectation of (partial) dominance of alleles that increase fitness, but the frequency of occurrence of such mutations is unknown.  相似文献   

18.
Starting from a completely homozygous population of Drosophila melanogaster, two groups of 100 inbred lines each were established and maintained for 46 generations, by a single brother-sister mating and two double first cousin matings, respectively. Sternopleural bristle number, wing length and wing width were simultaneously scored in all lines every 4-5 generations. The means of four lines in each group departed significantly from the overall mean and, in each case, this was attributed to a single mutation of relatively large effect on at least one trait (0.3-1.4 environmental standard deviations in absolute value). Further analyses revealed widespread pleiotropy, similar gene action of a given mutation for all traits affected, and predominant additive action. No apparent association was found between the magnitudes of mutational effects on the traits and fitness. However, all recessive mutations were deleterious. The distribution of mutant effects was asymmetrical (positive for bristles and negative for wing measurements). Moreover, these distributions had a high variance and may be leptokurtic, due to the presence of major genes. Estimates of the ratio of new mutational variance to environmental variance ranged within (0.7-3.4) x 10(-3), those for wing measurements being generally larger. In agreement with theory, the rate of between-line differentiation was independent of population size.  相似文献   

19.
Mackay TF  Lyman RF  Lawrence F 《Genetics》2005,170(4):1723-1735
Our ability to predict long-term responses to artificial and natural selection, and understand the mechanisms by which naturally occurring variation for quantitative traits is maintained, depends on detailed knowledge of the properties of spontaneous polygenic mutations, including the quantitative trait loci (QTL) at which mutations occur, mutation rates, and mutational effects. These parameters can be estimated by mapping QTL that cause divergence between mutation-accumulation lines that have been established from an inbred base population and selected for high and low trait values. Here, we have utilized quantitative complementation to deficiencies to map QTL at which spontaneous mutations affecting Drosophila abdominal and sternopleural bristle number have occurred in 11 replicate lines during 206 generations of divergent selection. Estimates of the numbers of mutations were consistent with diploid per-character mutation rates for bristle traits of 0.03. The ratio of the per-character mutation rate to total mutation rate (0.023) implies that >2% of the genome could affect just one bristle trait and that there must be extensive pleiotropy for quantitative phenotypes. The estimated mutational effects were not, however, additive and exhibited dependency on genetic background consistent with diminishing epistasis. However, these inferences must be tempered by the potential for epistatic interactions between spontaneous mutations and QTL affecting bristle number on the deficiency-bearing chromosomes, which could lead to overestimates in numbers of QTL and inaccurate inference of gene action.  相似文献   

20.
M L Wayne  T F Mackay 《Genetics》1998,148(1):201-210
The rare alleles model of mutation-selection balance (MSB) hypothesis for the maintenance of genetic variation was evaluated for two quantitative traits, ovariole number and body size. Mutational variances (VM) for these traits, estimated from mutation accumulation lines, were 4.75 and 1.97 x 10(-4) times the environmental variance (VE), respectively. The mutation accumulation lines were studied in three environments to test for genotype x environment interaction (GEI) of new mutations; significant mutational GEI was found for both traits. Mutations for ovariole number have a quadratic relationship with competitive fitness, suggesting stabilizing selection for the trait; there is no significant correlation between mutations for body size and competitive fitness. Under MSB, the ratio of segregating genetic variance, VG, to mutational variance, VM, estimates the inverse of the selection coefficient against a heterozygote for a new mutation. Estimates of VG/VM for ovariole number and body size were both approximately 1.1 x 10(4). Thus, MSB can explain the level of variation, if mutations affecting these traits are under very weak selection, which is inconsistent with the empirical observation of stabilizing selection, or if the estimate of VM is biased downward by two orders of magnitude. GEI is a possible alternative explanation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号