首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Study on anticancer agents that act via stabilization of telomeric G‐quadruplex DNA has emerged as novel and exciting field for anticancer drug discovery. The interaction of carbohydrate containing anticancer alkaloid aristololactam‐β‐D‐glucoside (ADG) with human telomeric G‐quadruplex DNA sequence was characterized by different biophysical techniques. The binding parameters were compared with daunomycin (DAN), a well‐known chemotherapeutic drug. The Scatchard binding isotherms revealed noncooperative binding for both with the binding affinity values of (1.01 ± 0.05) × 106 and (1.78 ± 0.18) × 106 M−1 for ADG and DAN, respectively. Circular dichroism, ferrocyanide quenching study, anisotropy study, thiazole orange displacement, optical melting, differential scanning calorimetry study, and molecular docking study suggest significant stacking and stabilizing efficiency of ADG with comparison to DAN. The energetics of the interaction for ADG and DAN revealed that both reactions were predominantly entropy driven. Negative heat capacity values were obtained from the temperature dependence of the enthalpy change. The standard molar Gibbs energy change exhibited only marginal alterations with temperature suggesting the occurrence of enthalpy‐entropy compensation. These findings indicate that ADG can act as a stabilizer of telomeric G‐quadruplex DNA and thereby can be considered as a potential telomerase inhibitor.  相似文献   

3.
4.
The bcl2 promoter region forms a G‐quadruplex structure, which is a crucial target for anticancer drug development. In this study, we provide theoretical predictions of the stability of different G‐quadruplex folds of the 23‐mer bcl2 promoter region and G‐quadruplex ligand. We take into account the whole G‐quadruplex structure, including bound‐cations and solvent effects, in order to compute the ligand binding free energy using molecular dynamics simulation. Two series of the carbazole and diphenylamine derivatives are used to screen for the most potent drug in terms of stabilization. The energy analysis identifies the predominant energy components affecting the stability of the various different G‐quadruplex folds. The energy associated with the stability of the G‐quadruplex‐K+ structures obtained displays good correlation with experimental Tm measurements. We found that loop orientation has an intrinsic influence on G‐quadruplex stability and that the basket structure is the most stable. Furthermore, parallel loops are the most effective drug binding site. Our studies also demonstrate that rigidity and planarity are the key structural elements of a drug that stabilizes the G‐quadruplex structure. BMVC‐4 is the most potential G‐quadruplex ligand. This approach demonstrates significant promise and should benefit drug design. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1038–1050, 2014.  相似文献   

5.
To evaluate the biological preference of [Yb(phen)2(OH2)Cl3](H2O)2 (phen is 1,10-phenanthroline) for DNA, interaction of Yb(III) complex with DNA in Tris–HCl buffer is studied by various biophysical and spectroscopic techniques which reveal that the complex binds to DNA. The results of fluorescence titration reveal that [Yb(phen)2(OH2)Cl3](H2O)2 has strongly quenched in the presence of DNA. The binding site number n, apparent binding constant K b, and the Stern–Volmer quenching constant K SV are determined. ΔH 0, ΔS 0, and ΔG 0 are obtained based on the quenching constants and thermodynamic theory (ΔH 0?>?0, ΔS 0?>?0, and ΔG 0?<?0). The experimental results show that the Yb(III) complex binds to DNA by non-intercalative mode. Groove binding is the preferred mode of interaction for [Yb(phen)2(OH2)Cl3](H2O)2 to DNA. The DNA cleavage results show that in the absence of any reducing agent, Yb(III) complex can cleave DNA. The antimicrobial screening tests are also recorded and give good results in the presence of Yb(III) complex.  相似文献   

6.
In the present research, the binding properties of diazinon (DZN), as an organophosphorus herbicide, to human serum albumin (HSA) were investigated using combination of spectroscopic, electrochemistry, and molecular modeling techniques. Changes in the UV–Vis and FT-IR spectra were observed upon ligand binding along with a significant degree of tryptophan fluorescence quenching on complex formation. The obtained results from spectroscopic and electrochemistry experiments along with the computational studies suggest that DZN binds to residues located in subdomains IIA of HSA with binding constant about 1410.9 M?1 at 300 K. From the thermodynamic parameters calculated according to the van’t Hoff equation, the enthalpy change ΔH° and entropy change ΔS° were found to be ?16.695 and 0.116 KJ/mol K, respectively. The primary binding pattern is determined by hydrophobic interaction and hydrogen binding occurring in so-called site I of HSA. DZN could slightly alter the secondary structure of HSA. All of experimental results are supported by computational techniques such as docking and molecular dynamics simulation using a HSA crystal model.  相似文献   

7.
Guanine‐rich DNA sequences that may form G‐quadruplexes are located in strategic DNA loci with the ability to regulate biological events. G‐quadruplexes have been under intensive scrutiny owing to their potential to serve as novel drug targets in emerging anticancer strategies. Thermodynamic characterization of G‐quadruplexes is an important and necessary step in developing predictive algorithms for evaluating the conformational preferences of G‐rich sequences in the presence or the absence of their complementary C‐rich strands. We use a combination of spectroscopic, calorimetric, and volumetric techniques to characterize the folding/unfolding transitions of the 26‐meric human telomeric sequence d[A3G3(T2AG3)3A2]. In the presence of K+ ions, the latter adopts the hybrid‐1 G‐quadruplex conformation, a tightly packed structure with an unusually small number of solvent‐exposed atomic groups. The K+‐induced folding of the G‐quadruplex at room temperature is a slow process that involves significant accumulation of an intermediate at the early stages of the transition. The G‐quadruplex state of the oligomeric sequence is characterized by a larger volume and compressibility and a smaller expansibility than the coil state. These results are in qualitative agreement with each other all suggesting significant dehydration to accompany the G‐quadruplex formation. Based on our volume data, 432 ± 19 water molecules become released to the bulk upon the G‐quadruplex formation. This large number is consistent with a picture in which DNA dehydration is not limited to water molecules in direct contact with the regions that become buried but involves a general decrease in solute–solvent interactions all over the surface of the folded structure. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 216–227, 2014.  相似文献   

8.
The interaction between human hemoglobin (Hb) and oxali-palladium was studied using different spectroscopic methods of UV–vis, fluorescence, circular dichroism (CD), and chemiluminescence at two temperatures of 25 and 37°C. The experimental results showed that both dynamic and static quenching is occurred simultaneously when oxali-palladium quenches the fluorescence of Hb. According to the fluorescence quenching method, the binding site number, apparent binding constant, and corresponding thermodynamic parameters were measured at two temperatures. The values of ΔH°, ΔS°, and ΔG° indicate that process of the formation of oxali-palladium–Hb complex is a spontaneous interaction procedure in which electrostatic interaction plays a major role. In addition, UV–vis and CD results showed that the addition of oxali-palladium changes the conformation of Hb. To evaluate the functional changes of Hb via destruction of the heme structure, fluorescence studies were performed. The results demonstrated that two fluorescent heme degradation products are found during the interaction of oxali-palladium with Hb. Also, the amount of hydrogen peroxide produced in the solution of Hb due to the interaction of oxali-palladium with Hb using chemiluminescence method indicated heme degradation in the protein is occurred. Structural and functional changes induced in Hb via heme degradation are considered as side effects of this synthesized anticancer drug.  相似文献   

9.
G‐quadruplex forming sequences are widely distributed in human genome and serve as novel targets for regulating gene expression and chromosomal maintenance. They offer unique targets for anticancer drug development. Here, the interaction of berberine (BC) and two of its analogs bearing substitution at 9 and 13‐position with human telomeric G‐quadruplex DNA sequence has been investigated by biophysical techniques. Both the analogs exhibited several‐fold higher binding affinity than berberine. The Scatchard binding isotherms revealed non‐cooperative binding. 9‐ω‐amino hexyl ether analog (BC1) showed highest affinity (1.8 × 106 M?1) while the affinity of the 13‐phenylpropyl analog (BC2) was 1.09 × 106 M?1. Comparative fluorescence quenching and polarization anisotropy of the emission spectra gave evidence for a stronger stacking interaction of the analogs compared to berberine. The thiazole orange displacement assay has clearly established that the analogs were more effective in displacing the end stacked dye in comparison to berberine. However, the binding of the analogs did not induce any major structural perturbation in the G‐quadruplex structure, but led to higher thermal stability. Energetics of the binding indicated that the association of the analogs was exothermic and predominantly entropy driven phenomenon. Increasing the temperature resulted in weaker binding; the enthalpic contribution increased and the entropic contribution decreased. A small negative heat capacity change with significant enthalpy–entropy compensation established the involvement of multiple weak noncovalent interactions in the binding process. The 9‐ω‐amino hexyl ether analog stabilized the G‐quadruplex structure better than the 13‐phenyl alkyl analog. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In the presence of hemin and under appropriate conditions, some modalities of G‐quadruplexes can form a peroxidase‐like DNAzyme that has been widely used in biology. Structure? function studies on the DNAzyme revealed that its catalytic ability may be dependent on the unimolecular parallel G‐quadruplex. In this report, we present the preliminary investigation on the relationship between the structure and function of DNAzymes through a terminal oligo modification in G‐quadruplex sequences by adding different lengths of oligo‐dT to the 3′‐ or 5′‐end of the aptamers. The results suggested that adding dTn to the 5′‐end of the DNA sequence of the enzyme improved the ability of hemin to bind with DNA, but the addition of dTn to the 3′‐end decreased the binding ability of hemin for DNA. The increased stability of the assembled DNAzyme would lead to more favorable binding between the enzyme and substrate (H2O2), facilitating higher peroxidase activity; on the contrary, with lower stability of the DNAzyme complex, we observed reduced peroxidase activity.  相似文献   

11.
Protein binding, DNA binding/cleavage and in vitro cytotoxicity studies of 2-((3-(dimethylamino)propyl)amino)naphthalene-1,4-dione (L) and its four coordinated M(II) complexes [M(II) = Co(II), Cu(II), Ni(II) and Zn(II)] have been investigated using various spectral techniques. The structure of the ligand was confirmed by spectral and single crystal XRD studies. The geometry of the complexes has been established using analytical and spectral investigations. These complexes show good binding tendency to bovine serum albumin (BSA) exhibiting high binding constant values (105 M?1) when compared to free ligand. Fluorescence titration studies reveal that these compounds bind strongly with CT-DNA through intercalative mode (Kapp 105 M?1) and follow the order: Cu(II) > Zn(II) > Ni(II) > Co(II) > L. Molecular docking study substantiate the strength and mode of binding of these compounds with DNA. All the complexes efficiently cleaved pUC18-DNA via hydroxyl radical mechanism and the Cu(II) complex degraded the DNA completely by converting supercoiled form to linear form. The complexes demonstrate a comparable in vitro cytotoxic activity against two human cancer cell lines (MCF-7 and A-549), which is comparable with that of cisplatin. AO/EB and DAPI staining studies suggest apoptotic mode of cell death, in these cancer cells, with the compounds under investigation.  相似文献   

12.
The GC‐rich genome of Deinococcus radiodurans contains a very high density of putative guanine quadruplex (G4) DNA motifs and its RecQ (drRecQ) was earlier characterized as a 3′→5′ dsDNA helicase. We saw that N‐Methyl mesoporphyrin IX (NMM), a G4 DNA binding drug affected normal growth as well as the gamma radiation resistance of the wild‐type bacterium. Interestingly, NMM treatment and recQ deletion showed additive effect on normal growth but there was no effect of NMM on gamma radiation resistance of recQ mutant. The recombinant drRecQ showed ~400 times higher affinity to G4 DNA (Kd = 11.74 ± 1.77 nM) as compared to dsDNA (Kd = 4.88 ± 1.30 µM). drRecQ showed ATP independent helicase function on G4 DNA, which was higher than ATP‐dependent helicase activity on dsDNA. Unlike wild‐type cells that sparingly stained for G4 structure with Thioflavin T (ThT), recQ mutant showed very high‐density of ThT fluorescence foci on DNA indicating an important role of drRecQ in regulation of G4 DNA structure dynamics in vivo. These results together suggested that drRecQ is an ATP independent G4 DNA helicase that plays an important role in the regulation of G4 DNA structure dynamics and its impact on radioresistance in D. radiodurans.  相似文献   

13.
Studies on ligand interaction with quadruplex DNA, and their role in stabilizing the complex at concentration prevailing under physiological condition, has attained high interest. Electrospray ionization mass spectrometry (ESI-MS) and spectroscopic studies in solution were used to evaluate the interaction of PBD and TMPyP4 ligands, stoichiometry and selectivity to G-quadruplex DNA. Two synthetic ligands from PBD family, namely pyrene-linked pyrrolo[2,1-c][1,4]benzodiazepine hybrid (PBD1), mixed imine-amide pyrrolobenzodiazepine dimer (PBD2) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) were studied. G-rich single-stranded oligonucleotide d(5'GGGGTTGGGG3') designated as d(T(2)G(8)), from the telomeric region of Tetrahymena Glaucoma, was considered for the interaction with ligands. ESI-MS and spectroscopic methods viz., circular dichroism (CD), UV-Visible, and fluorescence were employed to investigate the G-quadruplex structures formed by d(T(2)G(8)) sequence and its interaction with PBD and TMPyP4 ligands. From ESI-MS spectra, it is evident that the majority of quadruplexes exist as d(T(2)G(8))(2) and d(T(2)G(8))(4) forms possessing two to ten cations in the centre, thereby stabilizing the complex. CD band of PBD1 and PBD2 showed hypo and hyperchromicity, on interaction with quadruplex DNA, indicating unfolding and stabilization of quadruplex DNA complex, respectively. UV-Visible and fluorescence experiments suggest that PBD1 bind externally where as PBD2 intercalate moderately and bind externally to G-quadruplex DNA. Further, melting experiments using SYBR Green indicate that PBD1 unfolds and PBD2 stabilizes the G-quadruplex complex. ITC experiments using d(T(2)G(8)) quadruplex with PBD ligands reveal that PBD1 and PBD2 prefer external/loop binding and external/intercalative binding to quadruplex DNA, respectively. From experimental results it is clear that the interaction of PBD2 and TMPyP4 impart higher stability to the quadruplex complex.  相似文献   

14.
Abstract

A mononuclear cadmium(II) complex of formula [Cd(5,5′-dmbipy)2(OAc)2]·2H2O (5,5′-dmbipy = 5,5′-dimethyl-2,2′-bipyridine and OAc?=?acetato ligand) has been synthesized and characterized by FT-IR, UV–Vis, 1H-NMR, elemental analysis and single-crystal X-ray structure analysis. The molecular structure of the complex shows a distorted tetragonal antiprism CdN4O4 coordination geometry around the cadmium atom, resulting in coordination by four nitrogen atoms from two 5,5′-dmbipy ligands and four oxygen atoms from two acetate anions. The interaction of this complex to FS-DNA (fish sperm DNA) has also been studied by electronic absorption, fluorescence and gel electrophoresis techniques. Binding constant (Kb), Stern–Volmer constant (Ksv), number of binding sites (n) and bimolecular quenching rate constant (kq) have been calculated from these spectroscopic data. These results have revealed that the metal complex can bind effectively to FS-DNA via groove binding. The calculated thermodynamic parameters (ΔH°, ΔS° and ΔG°) show that hydrogen bonding and van der Waals forces have an important function in the Cd(II) complex–DNA interaction. The antibacterial effects of the synthesized cadmium complex have also been examined in vitro against standard bacterial strains: one Gram-positive (Staphylococcus aureus, ATCC 25923) and one Gram-negative (Escherichia coli, ATCC 25922) bacteria, using disk diffusion and macro-dilution broth methods. The obtained results show that the Cd(II) complex exhibits a marked antibacterial activity which is significantly better than those observed for its free ligand and metal salt for both Gram-positive and Gram-negative bacteria. However, this metal complex is a more potent antibacterial agent against the Gram-positive than that of the Gram-negative bacteria.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
The guanine-rich sequence, specifically in DNA, telomeric DNA, is a potential target of anticancer drugs. In this work, a mononuclear Fe(III) complex containing two meloxicam ligands was synthesized as a G-quadruplex stabilizer. The interaction between the Fe(III) complex and G-quadruplex with sequence of 5′-G3(T2AG3)3-3′ (HTG21) was investigated using spectroscopic methods, molecular modeling, and polymerase chain reaction (PCR) assays. The spectroscopic methods of UV–vis, fluorescence, and circular dichroism showed that the metal complex can effectively induce and stabilize G-quadruplex structure in the G-rich 21-mer sequence. Also, the binding constant between the Fe(III) complex and G-quadruplex was measured by these methods and it was found to be 4.53(±0.30)?×?105 M?1). The PCR stop assay indicated that the Fe(III) complex inhibits DNA amplification. The cell viability assay showed that the complex has significant antitumor activities against Hela cells. According to the UV–vis results, the interaction of the Fe(III) complex with duplex DNA is an order of magnitude lower than G-quadruplex. Furthermore, the release of the complex incorporated in bovine serum albumin nanoparticles was also investigated in physiological conditions. The release of the complex followed a bi-phasic release pattern with high and low releasing rates at the first and second phases, respectively. Also, in order to obtain the binding mode of the Fe(III) complex with G-quadruplex, molecular modeling was performed. The molecular docking results showed that the Fe(III) complex was docked to the end-stacked of the G-quadruplex with a ππ interaction, created between the meloxicam ligand and the guanine bases of the G-quadruplex.  相似文献   

16.
The intermolecular interaction between cyanidin‐3‐glucoside (Cy‐3‐G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy‐3‐G resulted from the formation of Cy‐3‐G–BSA complex. The number of binding sites (n) for Cy‐3‐G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy‐3‐G to BSA, Cy‐3‐G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy‐3‐G with BSA is spontaneous, and Cy‐3‐G can be inserted into the hydrophobic cavity of BSA (site II′) in the binding process of Cy‐3‐G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH0 = – 29.64 kcal/mol and ΔS0 = – 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy‐3‐G with BSA are Van der Waals and hydrogen bonding interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A simple and eco‐friendly methodology for the green synthesis of silver nanoparticles (AgNPs) using a mango seed extract was evaluated. The AgNPs were characterized by ultraviolet‐visible spectrophotometry, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive X‐ray spectroscopy, and X‐ray diffraction. The interaction between the green synthesized AgNPs and bovine serum albumin (BSA) in an aqueous solution at physiological pH was examined by fluorescence spectroscopy. The results confirmed that the AgNPs quenched the fluorophore of BSA by forming a ground state complex in aqueous solution. This fluorescence quenching data were also used to determine the binding sites and binding constants at different temperatures. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) suggest that the binding process occurs spontaneously through the involvement of electrostatic interactions. The synchronous fluorescence spectra showed a blue shift, indicating increasing hydrophobicity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
DNA‐minor‐groove‐binding ligands are potent antineoplastic molecules. The antibiotic distamycin A is the prototype of one class of these DNA‐interfering molecules that have been largely used in vitro. The affinity of distamycin A for DNA is well known, and the structural details of the complexes with some B‐DNA and G‐quadruplex‐forming DNA sequences have been already elucidated. Here, we show that distamycin A binds S100β, a protein involved in the regulation of several cellular processes. The reported affinity of distamycin A for the calcium(II)‐loaded S100β reinforces the idea that some biological activities of the DNA‐minor‐groove‐binding ligands arise from the binding to cellular proteins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, fluorescence emission spectra, UV–vis absorption spectra, ethidium bromide (EB)-competition experiment, and iodide quenching experiment were used for the interaction study of the Fish salmon DNA (FS-DNA) with [Pr(dmp)2Cl3(OH2)] where dmp is 2,9-dimethyl 1,10-phenanthroline. The binding constant and the number of binding sites of the complex with FS-DNA were 6.09?±?0.04 M?1 and 1.18, respectively. The free energy, enthalpy, and entropy changes (ΔG°, ΔH°, and ΔS°) in the binding process of the Pr(III) complex with FS-DNA were –8.02?kcal mol?1, +39.44?kcal mol?1, and +159.56?cal mol?1 K?1, respectively. Based on these results, the interaction process between FS-DNA with [Pr(dmp)2Cl3(OH2)] was spontaneous and the main binding interaction force was groove binding mode. Also, Fluorescence and electronic absorption spectroscopy were used in order to evaluate the binding characteristics, stoichiometry, and interaction mode of praseodymium(III) (Pr(III)) complex with bovine serum albumin (BSA). Title complex showed good binding propensity to BSA presenting moderately high Kb values. The fluorescence quenching of BSA by Pr(III) complex has been observed to be the static process. The positive ΔH° and ΔS° values showed that the hydrophobic interaction is the main force in the binding of Pr(III) complex and BSA. Eventually, the average aggregation number, <J>, of BSA potentially induced by title complex confirmed the 1:1 stoichiometry for title complex-BSA adducts. In vitro, antimicrobial activity of title complex was indicated that the complex is more active against both Escherichia coli and Enterococcus faecalis bacterial strains than Staphylococcus aureus, and Pseudomonas aeruginosa.

Communicated by Ramaswamy H. Sarma  相似文献   


20.
In order to evaluate biological potential of a novel synthesized complex [Nd(dmp)2Cl3.OH2] where dmp is 29-dimethyl 110-phenanthroline, the DNA-binding, cleavage, BSA binding, and antimicrobial activity properties of the complex are investigated by multispectroscopic techniques study in physiological buffer (pH 7.2).The intrinsic binding constant (Kb) for interaction of Nd(III) complex and FS–DNA is calculated by UV–Vis (Kb = 2.7 ± 0.07 × 105) and fluorescence spectroscopy (Kb = 1.13 ± 0.03 × 105). The Stern–Volmer constant (KSV), thermodynamic parameters including free energy change (ΔG°), enthalpy change (?H°), and entropy change (?S°), are calculated by fluorescent data and Vant’ Hoff equation. The experimental results show that the complex can bind to FS–DNA and the major binding mode is groove binding. Meanwhile, the interaction of Nd(III) complex with protein, bovine serum albumin (BSA), has also been studied by using absorption and emission spectroscopic tools. The experimental results show that the complex exhibits good binding propensity to BSA. The positive ΔH° and ?S° values indicate that the hydrophobic interaction is main force in the binding of the Nd(III) complex to BSA, and the complex can quench the intrinsic fluorescence of BSA remarkably through a static quenching process. Also, DNA cleavage was investigated by agarose gel electrophoresis that according to the results cleavage of DNA increased with increasing of concentration of the complex. Antimicrobial screening test gives good results in the presence of Nd(III) complex system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号