首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute kidney disease (AKI) leads to increased risk of progression to chronic kidney disease (CKD). Antithrombin III (ATIII) is a potent anticoagulant with anti‐inflammatory properties, and we previously reported that insufficiencies of ATIII exacerbated renal ischaemia‐reperfusion injury (IRI) in rats. In this study, we examined the characteristic of AKI‐CKD transition in rats with two distinct AKI models. Based on our observation, left IRI plus right nephrectomy (NX‐IRI) was used to determine whether ATIII had therapeutic effects in preventing CKD progression after AKI. It was observed that NX‐IRI resulted in significant functional and histological damage at 5 weeks after NX‐IRI compared with sham rats, which was mitigated by ATIII administration. Besides, we noticed that ATIII administration significantly reduced NX‐IRI‐induced interstitial fibrosis. Consistently, renal expression of collagen‐1, α‐smooth muscle actin and fibronectin were substantial diminished in ATIII‐administered rats compared with un‐treated NX‐IRI rats. Furthermore, the beneficial effects of ATIII were accompanied with decreased M1‐like macrophage recruitment and down‐regulation of M1‐like macrophage‐dependent pro‐inflammatory cytokines such as tumour necrosis factor α, inducible nitric oxide synthase and interleukin‐1β, indicating that ATIII prevented AKI‐CKD transition via inhibiting inflammation. Overall, ATIII shows potential as a therapeutic strategy for the prevention of CKD progression after AKI.  相似文献   

2.
Fibulin7 (Fbln7) is a matricellular protein that is structurally similar to short fibulins but does not possess elastogenic abilities. Fbln7 is localized on the cell surface of the renal tubular epithelium in the adult kidney. We previously reported that Fbln7 binds artificial calcium phosphate particles in vitro, and that heparin counteracts this binding by releasing Fbln7 from the cell surface. Fbln7 gene (Fbln7) deletion in vivo decreased interstitial fibrosis and improved renal function in a high phosphate diet-induced chronic kidney disease mouse model. However, the contribution of Fbln7 during acute injury response remains largely unknown. We hypothesized that Fbln7 serves as an exacerbating factor in acute kidney injury (AKI). We employed three AKI models in vivo and in vitro, including unilateral ureteral obstruction (UUO), cisplatin-induced AKI, and calcium oxalate (CaOx)-induced AKI. Here, we report that Fbln7KO mice were protected from kidney damage in a CaOx-induced AKI model. Using HEK293T cells, we found that Fbln7 overexpression enhanced the CaOx-induced upregulation of EGR1 and LAMB3, and that heparin treatment canceled this effect. Interestingly, the protective function observed in Fbln7KO kidneys was limited to the CaOx-induced AKI model, while Fbln7KO mice were not protected against UUO-induced renal fibrosis or cisplatin-induced renal tubular damage. Taken together, our study indicates that Fbln7 mediates the local deposition of CaOx and damages the renal tubular epithelium. Releasing Fbln7 from the cell surface via heparin/heparin derivatives or Fbln7 inhibitory antibodies may provide a general strategy to mitigate calcium crystal-induced kidney injuries.  相似文献   

3.
HOXA cluster antisense RNA 2 (HOXA‐AS2) is a long noncoding RNA associated with the development of numerous cancers. But, whether HOXA‐AS2 exhibits a certain function in sepsis‐engendered acute kidney injury (AKI) remains uninvestigated. We strived to unveil the role of HOXA‐AS2 in sepsis‐engendered AKI. The expression of HOXA‐AS2 in sepsis patients, animal models and lipopolysaccharide (LPS)‐impaired HK‐2 cells was primarily assessed via a real‐time quantitative polymerase chain reaction. The effects of HOXA‐AS2 on cell survival of HK‐2 cells under LPS irritation were evaluated after overexpression of HOXA‐AS2. The correlation between HOXA‐AS2 and microRNA (miR)‐106b‐5p was forecasted via bioinformatics software and verified by using a luciferase report system. Subsequently, the functions of miR‐106b‐5p in LPS‐damaged HK‐2 cells were reassessed. Western blot was used for the determination of Wnt/β‐catenin and nuclear factor‐κB (NF‐κB) pathways. HOXA‐AS2 expression was decreased in sepsis patients, animal operation group and LPS‐irritated HK‐2 cells. Overexpressed HOXA‐AS2 mollified LPS‐triggered impairment in HK‐2 cells. In addition, a negative mediatory relation between HOXA‐AS2 and miR‐106b‐5p was predicated. Synchronously, overexpressed miR‐106b‐5p counteracted the protection of HOXA‐AS2 in LPS‐damaged HK‐2 cells. Ultimately, Wnt/β‐catenin and NF‐κB pathways were hindered by HOXA‐AS2 via targeting miR‐106b‐5p. HOXA‐AS2 exhibited protection in sepsis‐engendered AKI via targeting miR‐106b‐5p and hindering the Wnt/β‐catenin and NF‐κB pathways.  相似文献   

4.
Organ toxicity, including kidney injury, limits the use of cisplatin for the treatment of multiple human cancers. Hence, interventions to alleviate cisplatin‐induced nephropathy are of benefit to cancer patients. Recent studies have demonstrated that pharmacological inhibition of the Notch signaling pathway enhances cisplatin efficacy against several cancer cells. However, whether augmentation of the anti‐cancer effect of cisplatin by Notch inhibition comes at the cost of increased kidney injury is unclear. We show here that treatment of mice with cisplatin resulted in a significant increase in Notch ligand Delta‐like 1 (Dll1) and Notch1 intracellular domain (N1ICD) protein expression levels in the kidneys. N‐[N‐(3,5‐difluorophenacetyl)‐L‐alanyl]‐S‐phenylglycine t‐butyl ester (DAPT), a γ‐secretase inhibitor reversed cisplatin‐induced increase in renal N1ICD expression and plasma or urinary levels of predictive biomarkers of acute kidney injury (AKI). DAPT also mitigated cisplatin‐induced tubular injury and reduction in glomerular filtration rate. Real‐time multiphoton microscopy revealed marked necrosis and peritubular vascular dysfunction in the kidneys of cisplatin‐treated mice which were abrogated by DAPT. Cisplatin‐induced Dll1/Notch1 signaling was recapitulated in a human proximal tubule epithelial cell line (HK‐2). siRNA‐mediated Dll1 knockdown and DAPT attenuated cisplatin‐induced Notch1 cleavage and cytotoxicity in HK‐2 cells. These data suggest that Dll1‐mediated Notch1 signaling contributes to cisplatin‐induced AKI. Hence, the Notch signaling pathway could be a potential therapeutic target to alleviate renal complications associated with cisplatin chemotherapy.  相似文献   

5.
Based on multiple studies in animal models, mesenchymal stem cell (MSC)‐based therapy appears to be an innovative intervention approach with tremendous potential for the management of kidney disease. However, the clinical therapeutic effects of MSCs in either acute kidney injury (AKI) or chronic kidney disease (CKD) are still under debate. Hurdles originate from the harsh microenvironment in vivo that decreases the cell survival rate, paracrine activity and migratory capacity of MSCs after transplantation, which are believed to be the main reasons for their limited effects in clinical applications. Melatonin is traditionally regarded as a circadian rhythm‐regulated neurohormone but in recent years has been found to exhibit antioxidant and anti‐inflammatory properties. Because inflammation, oxidative stress, thermal injury, and hypoxia are abnormally activated in kidney disease, application of melatonin preconditioning to optimize the MSC response to the hostile in vivo microenvironment before transplantation is of great importance. In this review, we discuss current knowledge concerning the beneficial effects of melatonin preconditioning in MSC‐based therapy for kidney disease. By summarizing the available information and discussing the underlying mechanisms, we aim to improve the therapeutic effects of MSC‐based therapy for kidney disease and accelerate translation to clinical application.  相似文献   

6.
Ischaemic preconditioning (IPC) attenuates acute kidney injury (AKI) from renal ischaemia reperfusion. Renalase, an amine oxidase secreted by the proximal tubule, not only degrades circulating catecholamines but also protects against renal ischaemia reperfusion injury. Here, it has been suggested that the renoprotective effect of renal IPC is partly mediated by renalase. In a model of brief intermittent renal IPC, the increased cortex renalase expression was found to last for 48 hrs. IPC significantly reduced renal tubular inflammation, necrosis and oxidative stress following renal ischaemia reperfusion injury. Such effects were attenuated by blocking renalase with an anti‐renalase monoclonal antibody. We further demonstrated that renalase expression was up‐regulated by hypoxia in vitro via an hypoxia‐inducible factor (HIF)‐1α mechanism. The IPC‐induced up‐regulation of renalase in vivo was also reduced by pre‐treatment with an HIF‐1α inhibitor, 3‐(5′‐Hydroxymethyl‐2′‐furyl)‐1‐benzyl indazole. In summary, the renoprotective effect of IPC is partly dependent on the renalase expression, which may be triggered by hypoxia via an HIF‐1α mechanism. Endogenous renalase shows potential as a therapeutic agent for the prevention and treatment of AKI.  相似文献   

7.
Three‐dimensional (3D) cell culture has been reported to increase the therapeutic potentials of mesenchymal stem cells (MSCs). In this study, we aimed to investigate the therapeutic effects of 3D spheroids of human adipose‐derived MSCs for acute kidney injury (AKI). In vitro studies indicated that 3D spheroids of MSCs produced higher levels of extracellular matrix proteins (including collagen I, fibronectin and laminin), and exhibited stronger anti‐apoptotic and anti‐oxidative capacities than two‐dimensional (2D) cultured cells. Furthermore, 3D culture increased the paracrine secretion of cytokines by MSCs, including angiogenic factors (VEGF and basic fibroblast growth factor), anti‐apoptotic factors (epidermal growth factor and hepatocyte growth factor), the anti‐oxidative factor insulin‐like growth factor and the anti‐inflammatory protein tumour necrosis factor‐alpha stimulated gene/protein 6. Consistent with in vitro experiments, 3D spheroids of MSCs showed enhanced survival and paracrine effects in vivo. More importantly, when injected into the kidney of model rats with ischemia‐reperfusion (I/R)‐induced AKI, 3D spheroids were more beneficial in protecting the I/R kidney against apoptosis, reducing tissue damage, promoting vascularization and ameliorating renal function compared with 2D cultured cells. Therefore, the 3D culture strategy improved the therapeutic effects of MSCs, and might be promising for AKI treatment.  相似文献   

8.
Ischemia reperfusion (I/R)‐induced acute kidney injury (AKI) is a common and serious condition. Irisin, an exercise‐induced hormone, improves mitochondrial function and reduces reactive oxygen species (ROS) production. Glutathione peroxidase 4 (GPX4) is a key regulator of ferroptosis and its inactivation aggravates renal I/R injury by inducing ROS production. However, the effect of irisin on GPX4 and I/R‐induced AKI is still unknown. To study this, male adult mice were subjected to renal I/R by occluding bilateral renal hilum for 30 min, which was followed by 24 hr reperfusion. Our results showed serum irisin levels were decreased in renal I/R mice. Irisin (250 μg/kg) treatment alleviated renal injury, downregulated inflammatory response, improved mitochondrial function, and reduced ER stress and oxidative stress after renal I/R, which were associated with upregulation of GPX4. Treated with RSL3 (a GPX4 inhibitor) abolished irisin's protective effect. Thus, irisin attenuates I/R‐induced AKI through upregulating GPX4.  相似文献   

9.
The ability of cisplatin (cis‐diamminedichloroplatinum II) toxicity to induce acute kidney injury (AKI) has attracted people's attention and concern for a long time, but its molecular mechanisms are still widely unknown. We found that the expression of transforming growth factor‐β (TGF‐β)‐activated kinase 1 (TAK1) could be increased in kidneys of mice administrated with cisplatin. Autophagy is an evolutionarily conserved catabolic pathway and is involved in various acute and chronic injuries. Moreover, p38 MAPK (mitogen‐activated protein kinase) and ERK regulate autophagy in response to various stimuli. Therefore, our hypothesis is that cisplatin activates TAK1, which phosphorylates p38 and ERK, leading to excessive autophagy of tubular epithelial cells and thus exacerbating kidney damage. Here, BALB/c mice were intraperitoneally injected with a TAK1 inhibitor and were then administrated with sham or cisplatin at 20 mg/kg by intraperitoneal injection. Compared with mice in the vehicle cisplatin group, mice intraperitoneally injected with a TAK1 inhibitor were found to have lower serum creatinine and less tubular damage following cisplatin‐induced AKI. Furthermore, inhibition of TAK1 reduced p38 and Erk phosphorylation, decreased expression of LC3II and reversed the down‐regulation of P62 expression induced by cisplatin. The hypothesis was verified with tubular epithelial cells administrated with cisplatin in vitro. Finally, p38 inhibitor or ERK inhibitor abated autophagy activation and cell viability reduction in tubular epithelial cells treated with cisplatin plus TAK1 overexpression vector. Taken together, our results show that cisplatin activates TAK1, which phosphorylates p38 and ERK, leading to excessive autophagy of tubular epithelial cells that exacerbates kidney damage.  相似文献   

10.
This paper presents an extension of the joint modeling strategy for the case of multiple longitudinal outcomes and repeated infections of different types over time, motivated by postkidney transplantation data. Our model comprises two parts linked by shared latent terms. On the one hand is a multivariate mixed linear model with random effects, where a low‐rank thin‐plate spline function is incorporated to collect the nonlinear behavior of the different profiles over time. On the other hand is an infection‐specific Cox model, where the dependence between different types of infections and the related times of infection is through a random effect associated with each infection type to catch the within dependence and a shared frailty parameter to capture the dependence between infection types. We implemented the parameterization used in joint models which uses the fitted longitudinal measurements as time‐dependent covariates in a relative risk model. Our proposed model was implemented in OpenBUGS using the MCMC approach.  相似文献   

11.
The use of the mammal target of rapamycin (mTOR) inhibitors has been consolidated as the therapy of election for preventing graft rejection in kidney transplant patients, despite their immunosuppressive activity is less strong than anti‐calcineurin agents like tacrolimus and cyclosporine A. Furthermore, as mTOR is widely expressed, rapamycin (a macrolide antibiotic produced by Streptomyces hygroscopicus) is recommended in patients presenting neoplasia due to its antiproliferative actions. Hence, we have investigated whether rapamycin presents side effects in the physiology of other cell types different from leucocytes, such as platelets. Blood samples were drawn from healthy volunteers and kidney transplant patients long‐term medicated with rapamycin: sirolimus and everolimus. Platelets were either loaded with fura‐2 or directly stimulated, and immunoassayed or fixed with Laemmli's buffer to perform the subsequent analysis of platelet physiology. Our results indicate that rapamycin evokes a biphasic time‐dependent alteration in calcium homeostasis and function in platelets from kidney transplant patients under rapamycin regime, as demonstrated by the reduction in granule secretion observed and subsequent impairment of platelet aggregation in these patients compared with healthy volunteers. Platelet count was also reduced in these patients, thus 41% of patients presented thrombocytopenia. All together our results show that long‐term administration of rapamycin to kidney transplant patients evokes alteration in platelet function.  相似文献   

12.
13.
Contrast-induced acute kidney injury (CI-AKI) is the common hospitalized acute kidney injury (AKI). However, the diagnosis by serum creatinine might not be early enough. Currently, the roles of circulating mitochondria in CI-AKI are still unclear. Since early detection is crucial for treatment, the association between circulating mitochondrial function and CI-AKI was tested as a potential biomarker for detection of CI-AKI. Twenty patients with chronic kidney disease (CKD) undergoing percutaneous coronary intervention (PCI) were enrolled. Blood and urine samples were obtained at the time of PCI, and 6, 24, 48 and 72 h after PCI. Plasma and urine neutrophil gelatinase-associated lipocalin (NGAL) were measured. Oxidative stress, inflammation, mitochondrial function, mitochondrial dynamics and cell death were determined from peripheral blood mononuclear cells. Forty percent of patients developed AKI. Plasma NGAL levels increased after 24 h after receiving contrast media. Cellular and mitochondrial oxidative stress, mitochondrial dysfunction and decreased mitochondrial fusion occurred at 6 h following contrast media exposure. Subgroup of AKI had higher %necroptosis cells and TNF-α mRNA expression than subgroup without AKI. Collectively, circulating mitochondrial dysfunction could be an early predictive biomarker for CI-AKI in CKD patients receiving contrast media. These findings provide novel strategies to prevent CI-AKI according to its pathophysiology.  相似文献   

14.
Damage to endothelial cells contributes to acute kidney injury (AKI) by causing impaired perfusion, while the permanent loss of the capillary network following AKI has been suggested to promote chronic kidney disease. Therefore, strategies to protect renal vasculature may impact both short‐term recovery and long‐term functional preservation post‐AKI. Human adipose stromal cells (hASCs) possess pro‐angiogenic and anti‐inflammatory properties and therefore have been tested as a therapeutic agent to treat ischaemic conditions. This study evaluated hASC potential to facilitate recovery from AKI with specific attention to capillary preservation and inflammation. Male Sprague Dawley rats were subjected to bilateral ischaemia/reperfusion and allowed to recover for either two or seven days. At the time of reperfusion, hASCs or vehicle was injected into the suprarenal abdominal aorta. hASC‐treated rats had significantly greater survival compared to vehicle‐treated rats (88.7% versus 69.3%). hASC treatment showed hastened recovery as demonstrated by lower creatinine levels at 48 hrs, while tubular damage was significantly reduced at 48 hrs. hASC treatment resulted in a significant decrease in total T cell and Th17 cell infiltration into injured kidneys at 2 days post‐AKI, but an increase in accumulation of regulatory T cells. By day 7, hASC‐treated rats showed significantly attenuated capillary rarefaction in the cortex (15% versus 5%) and outer medulla (36% versus 18%) compared to vehicle‐treated rats as well as reduced accumulation of interstitial alpha‐smooth muscle actin‐positive myofibroblasts. These results suggest for the first time that hASCs improve recovery from I/R‐induced injury by mechanisms that contribute to decrease in inflammation and preservation of peritubular capillaries.  相似文献   

15.
16.
Glaucoma is a progressive disease due to damage in the optic nerve with associated functional losses. Although the relationship between structural and functional progression in glaucoma is well established, there is disagreement on how this association evolves over time. In addressing this issue, we propose a new class of non‐Gaussian linear‐mixed models to estimate the correlations among subject‐specific effects in multivariate longitudinal studies with a skewed distribution of random effects, to be used in a study of glaucoma. This class provides an efficient estimation of subject‐specific effects by modeling the skewed random effects through the log‐gamma distribution. It also provides more reliable estimates of the correlations between the random effects. To validate the log‐gamma assumption against the usual normality assumption of the random effects, we propose a lack‐of‐fit test using the profile likelihood function of the shape parameter. We apply this method to data from a prospective observation study, the Diagnostic Innovations in Glaucoma Study, to present a statistically significant association between structural and functional change rates that leads to a better understanding of the progression of glaucoma over time.  相似文献   

17.
Fatty acid oxidation (FAO) dysfunction is one of the important mechanisms of renal fibrosis. Sirtuin 3 (Sirt3) has been confirmed to alleviate acute kidney injury (AKI) by improving mitochondrial function and participate in the regulation of FAO in other disease models. However, it is not clear whether Sirt3 is involved in regulating FAO to improve the prognosis of AKI induced by cisplatin. Here, using a murine model of cisplatin‐induced AKI, we revealed that there were significantly FAO dysfunction and extensive lipid deposition in the mice with AKI. Metabolomics analysis suggested reprogrammed energy metabolism and decreased ATP production. In addition, fatty acid deposition can increase reactive oxygen species (ROS) production and induce apoptosis. Our data suggested that Sirt3 deletion aggravated FAO dysfunction, resulting in increased apoptosis of kidney tissues and aggravated renal injury. The activation of Sirt3 by honokiol could improve FAO and renal function and reduced fatty acid deposition in wide‐type mice, but not Sirt3‐defective mice. We concluded that Sirt3 may regulate FAO by deacetylating liver kinase B1 and activating AMP‐activated protein kinase. Also, the activation of Sirt3 by honokiol increased ATP production as well as reduced ROS and lipid peroxidation through improving mitochondrial function. Collectively, these results provide new evidence that Sirt3 is protective against AKI. Enhancing Sirt3 to improve FAO may be a potential strategy to prevent kidney injury in the future.  相似文献   

18.
Circular RNA YAP1 (circYAP1) was reported to participate in progression of gastric cancer. However, the role of circYAP1 in acute kidney injury (AKI) remains obscure. We attempted to examine the effects of circYAP1 on ischaemia/reperfusion‐stimulated renal injury. AKI model was established by treating HK‐2 cells in ischaemia/reperfusion (I/R) environment. CircYAP1 expression in blood of AKI patients and I/R‐treated HK‐2 cells was evaluated via RT‐qPCR. CCK‐8, flow cytometry, ELISA and ROS assay were executed to test the impact of circYAP1 on cell viability, apoptosis, inflammatory cytokines and ROS generation. Bioinformatic analysis was executed to explore miRNA targets. The relativity between circYAP1 and miR‐21‐5p was verified by RT‐qPCR and luciferase assay. The functions of miR‐21‐5p in I/R‐triggered injury were reassessed. PI3K/AKT/mTOR pathway was detected by Western blot. Down‐regulated circYAP1 was observed in AKI blood samples and I/R‐treated HK‐2 cells. CircYAP1 overexpression expedited cell growth and weakened secretion of inflammatory factors and ROS generation in I/R‐disposed cells. Besides, we found circYAP1 could sponge to miR‐21‐5p. Interestingly, miR‐21‐5p overexpression overturned the repressive effects of circYAP1 on cell injury. Moreover, PI3K/AKT/mTOR pathway was activated by circYAP1 via inhibiting miR‐21‐5p. We demonstrated that circYAP1 activated PI3K/AKT/mTOR pathway and secured HK‐2 cells from I/R injury via sponging miR‐21‐5p.  相似文献   

19.
The incidence of acute kidney injury (AKI) is on the rise and is associated with high mortality; however, there are currently few effective treatments. Moreover, the relationship between Tregs and other components of the immune microenvironment (IME) in the pathogenesis of AKI remains unclear. We downloaded four publicly accessible AKI datasets, GSE61739, GSE67401, GSE19130, GSE81741, GSE19288 and GSE106993 from the gene expression omnibus (GEO) database. Additionally, we gathered two kidney single-cell sequencing (scRNA-seq) samples from the Department of Organ Transplantation at Zhujiang Hospital of Southern Medical University to investigate chronic kidney transplant rejection (CKTR). Moreover, we also collected three samples of normal kidney tissue from GSE131685. By analysing the differences in immune cells between the AKI and Non-AKI groups, we discovered that the Non-AKI group contained a significantly greater number of Tregs than the AKI group. Additionally, the activation of signalling pathways, such as inflammatory molecules secretion, immune response, glycolytic metabolism, NOTCH, FGF, NF-κB and TLR4, was significantly greater in the AKI group than in the Non-AKI group. Additionally, analysis of single-cell sequencing data revealed that Tregs in patients with chronic kidney rejection and in normal kidney tissue have distinct biology, including immune activation, cytokine production, and activation fractions of signalling pathways such as NOTCH and TLR4. In this study, we found significant differences in the IME between AKI and Non-AKI, including differences in Tregs cells and activation levels of biologically significant signalling pathways. Tregs were associated with lower activity of signalling pathways such as inflammatory response, inflammatory molecule secretion, immune activation, glycolysis.  相似文献   

20.
The kidneys are essential for maintaining homeostasis, are responsible for the reabsorption of water, glucose and amino acids, and filter the blood by removing waste. Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of renal excretory function and the accumulation of end metabolic products of urea and creatinine. AKI is associated with the later development of chronic kidney disease and end-stage kidney disease, and may eventually be fatal. Early diagnosis of AKI and assessments of the effects of treatment, however, are challenging. The pathophysiological mechanism of AKI is thought to be the imbalance between oxygen supply and demand in the kidneys. We have assessed the ability of arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI), without the administration of contrast media, to quantify renal blood flow (RBF) non-invasively. We found that RBF was significantly lower in AKI patients than in healthy volunteers. These results suggest that ASL perfusion MRI, a noninvasive measurement of RBF, may be useful in the early diagnosis of AKI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号