首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic conflicts in genomic imprinting   总被引:7,自引:0,他引:7  
The expression pattern of genes in mammals and plants can depend upon the parent from which the gene was inherited, evidence for a mechanism of parent-specific genomic imprinting. Kinship considerations are likely to be important in the natural selection of many such genes, because coefficients of relatedness will usually differ between maternally and paternally derived genes. Three classes of gene are likely to be involved in genomic imprinting: the imprinted genes themselves, trans-acting genes in the parents, which affect the application of the imprint, and trnas-acting genes in the offspring, which recognize and affect the expression of the imprint. We show that coefficients of relatedness will typically differ among these three classes, thus engendering conflicts of interest between Imprinter genes, imprinted genes, and imprint-recognition genes, with probable consequences for the evolution of the imprinting machinery.  相似文献   

2.
3.
Mothers can determine which genotypes of offspring they will produce through selective abortion or selective implantation. This process can, at some loci, favour matching between maternal and offspring genotype whereas at other loci mismatching may be favoured (e.g. MHC, HLA). Genomic imprinting generally renders gene expression monoallelic and could thus be adaptive at loci where matching or mismatching is beneficial. This hypothesis, however, remains unexplored despite evidence that loci known to play a role in genetic compatibility may be imprinted. We develop a simple model demonstrating that, when matching is beneficial, imprinting with maternal expression is adaptive because the incompatible paternal allele is not detected, protecting offspring from selective abortion. Conversely, when mismatching is beneficial, imprinting with paternal expression is adaptive because the maternal genotype is more able to identify the presence of a foreign allele in offspring. Thus, imprinting may act as a genomic ‘cloaking device’ during critical periods in development when selective abortion is possible.  相似文献   

4.
Recent years have seen a surge of interest in linking the theories of kin selection and sexual selection. In particular, there is a growing appreciation that kin selection, arising through demographic factors such as sex‐biased dispersal, may modulate sexual conflicts, including in the context of male–female arms races characterized by coevolutionary cycles. However, evolutionary conflicts of interest need not only occur between individuals, but may also occur within individuals, and sex‐specific demography is known to foment such intragenomic conflict in relation to social behavior. Whether and how this logic holds in the context of sexual conflict—and, in particular, in relation to coevolutionary cycles—remains obscure. We develop a kin‐selection model to investigate the interests of different genes involved in sexual and intragenomic conflict, and we show that consideration of these conflicting interests yields novel predictions concerning parent‐of‐origin specific patterns of gene expression and the detrimental effects of different classes of mutation and epimutation at loci underpinning sexually selected phenotypes.  相似文献   

5.
The evolution of X-linked genomic imprinting   总被引:1,自引:0,他引:1  
Iwasa Y  Pomiankowski A 《Genetics》2001,158(4):1801-1809
We develop a quantitative genetic model to investigate the evolution of X-imprinting. The model compares two forces that select for X-imprinting: genomic conflict caused by polygamy and sex-specific selection. Genomic conflict can only explain small reductions in maternal X gene expression and cannot explain silencing of the maternal X. In contrast, sex-specific selection can cause extreme differences in gene expression, in either direction (lowered maternal or paternal gene expression), even to the point of gene silencing of either the maternal or paternal copy. These conclusions assume that the Y chromosome lacks genetic activity. The presence of an active Y homologue makes imprinting resemble the autosomal pattern, with active paternal alleles (X- and Y-linked) and silenced maternal alleles. This outcome is likely to be restricted as Y-linked alleles are subject to the accumulation of deleterious mutations. Experimental evidence concerning X-imprinting in mouse and human is interpreted in the light of these predictions and is shown to be far more easily explained by sex-specific selection.  相似文献   

6.
H G Spencer  A G Clark 《Heredity》2014,113(2):112-118
Theories focused on kinship and the genetic conflict it induces are widely considered to be the primary explanations for the evolution of genomic imprinting. However, there have appeared many competing ideas that do not involve kinship/conflict. These ideas are often overlooked because kinship/conflict is entrenched in the literature, especially outside evolutionary biology. Here we provide a critical overview of these non-conflict theories, providing an accessible perspective into this literature. We suggest that some of these alternative hypotheses may, in fact, provide tenable explanations of the evolution of imprinting for at least some loci.  相似文献   

7.
J B Wolf  Y Brandvain 《Heredity》2014,113(2):129-137
Numerous evolutionary theories have been developed to explain the epigenetic phenomenon of genomic imprinting. Here, we explore a subset of theories wherein non-additive genetic interactions can favour imprinting. In the simplest genic interaction—the case of underdominance—imprinting can be favoured to hide effectively low-fitness heterozygous genotypes; however, as there is no asymmetry between maternally and paternally inherited alleles in this model, other means of enforcing monoallelic expression may be more plausible evolutionary outcomes than genomic imprinting. By contrast, more successful interaction models of imprinting rely on an asymmetry between the maternally and paternally inherited alleles at a locus that favours the silencing of one allele as a means of coordinating the expression of high-fitness allelic combinations. For example, with interactions between autosomal loci, imprinting functionally preserves high-fitness genotypes that were favoured by selection in the previous generation. In this scenario, once a focal locus becomes imprinted, selection at interacting loci favours a matching imprint. Uniparental transmission generates similar asymmetries for sex chromosomes and cytoplasmic factors interacting with autosomal loci, with selection favouring the expression of either maternal or paternally derived autosomal alleles depending on the pattern of transmission of the uniparentally inherited factor. In a final class of models, asymmetries arise when genes expressed in offspring interact with genes expressed in one of its parents. Under such a scenario, a locus evolves to have imprinted expression in offspring to coordinate the interaction with its parent''s genome. We illustrate these models and explore key links and differences using a unified framework.  相似文献   

8.
D Haig 《Heredity》2014,113(2):96-103
Common misconceptions of the ‘parental conflict'' theory of genomic imprinting are addressed. Contrary to widespread belief, the theory defines conditions for cooperation as well as conflict in mother–offspring relations. Moreover, conflict between genes of maternal and paternal origin is not the same as conflict between mothers and fathers. In theory, imprinting can evolve either because genes of maternal and paternal origin have divergent interests or because offspring benefit from a phenotypic match, or mismatch, to one or other parent. The latter class of models usually require maintenance of polymorphism at imprinted loci for the maintenance of imprinted expression. The conflict hypothesis does not require maintenance of polymorphism and is therefore a more plausible explanation of evolutionarily conserved imprinting.  相似文献   

9.
The conflict theory is the only hypothesis to have attracted any critical attention for the evolution of genomic imprinting. Although the earliest data appeared supportive, recent systematic analyses have not confirmed the model's predictions. The status of theory remains undecided, however, as post-hoc explanation can be provided as to why these predictions are not borne out.  相似文献   

10.
Parental genomic imprinting is characterized by the expression of a selected panel of genes from one of the two parental alleles. Recent evidence shows that DNA methylation and histone modifications are responsible for this parent-of-origin-dependent expression of imprinted genes. Because similar epigenetic marks have been recruited independently in plants and mammals, the only organisms in which imprinted gene loci have been identified so far, this phenomenon represents a case for convergent evolution. Here we discuss the emerging parallels in imprinting in both taxa. We also describe the significance of imprinting for reproduction and discuss potential models for its evolution.  相似文献   

11.
The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues'' kinship theory; Day and Bonduriansky''s sexual antagonism theory; and Wolf and Hager''s maternal–offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal–offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted.The discovery of genomic imprinting, where the expression of an allele depends on its parental origin, motivated a diversity of theories attempting to explain its existence (Spencer and Clark, 2014). Three main theories have withstood scrutiny and are the focus of this review: Haig and colleagues'' kinship theory (Haig and Westoby, 1989; Haig, 2000a, 2004); Day and Bonduriansky''s (2004) sexual antagonism theory (see also Bonduriansky, 2007); and Wolf and Hager''s (2006) maternal–offspring coadaptation theory (see also Wolf and Hager, 2009; Wolf, 2013). Although these theories rest on different logic and fundamental assumptions, they share a critical common feature: some process creates a selective asymmetry between the maternally and paternally inherited allelic copies at a locus that causes selection to favor differential expression of the alleles (typically silencing of one of the copies) (Figures 1, ,2,2, ,33).Open in a separate windowFigure 1The kinship theory of genomic imprinting has two prerequisites: first, epigenetic marks that differentiate matrigenes from patrigenes; second, a difference in the relatedness of matrigenes and patrigenes to the social group. (a) The social group in the example depicted is a single litter of offspring, and multiple mating produces a relatedness asymmetry between half-siblings. The relatedness for matrigenes is ½ and the relatedness for patrigenes is 0. (Other sources of relatedness asymmetry are possible—e.g., sex-biased dispersal or high fitness variance in one sex—and social interactions are not limited to the juvenile period only). (b) The kinship theory envisions kin selection acting independently on genes of maternal and paternal origin and solves for the evolutionarily stable gene expression strategy for matrigenes and patrigenes. (c) For genes where the matrigenic allele''s optimum expression level is higher than that of the patrigene''s (e.g., a fetal growth inhibitor), the kinship theory predicts silencing of the patrigenic allele; for genes with the opposite effect (e.g., a fetal growth enhancer), the prediction is for patrigenic expression.Open in a separate windowFigure 2(a, b) The sexual antagonism theory of genomic imprinting starts with sexually antagonistic selection, which produces different allele frequencies, shown as pie charts, for genes of maternal and paternal origin. (c, d) Natural selection favors individuals that are able to express the fitter of the two alleles at a locus, which for males will be the patrigenic allele and for females will be the matrigenic allele. (In addition, the sexual antagonism theory may predict matrigenic or patrigenic expression in both sexes, such that the expressed allele derives from the parental sex that experiences stronger selection pressure. This scenario is not depicted).Open in a separate windowFigure 3(a) The maternal–offspring coadaptation theory of genomic imprinting relies on the correlation of genes in the mother and genes of maternal origin in the offspring (shown in light blue). (b) Fitness of offspring is determined by the interaction (shown in dark purple) between the phenotypes of mothers and offspring. (c) Imprinted silencing of the patrigenic allele can be favored for either of two reasons, depending on the genetic architecture of the interacting phenotypes. First, when a single gene governs the interaction and phenotypic matching between mothers and their offspring produces high fitness, then silencing of the patrigenic allele is beneficial to offspring because it raises the probability of producing a match. Second, if different loci are involved in the phenotypic interaction, past correlational selection will have produced a covariance between them, generating haplotypes with combinations of alleles that interact well together. (N.B. This multi-locus interaction is not depicted in the figure.) The offspring is more likely to inherit from its mother an allele that interacts well with the alleles in the mother''s genotype. This also favors the imprinted silencing of the patrigenic allele because it raises the probability that the offspring expresses an allele that makes for a good interaction with the maternal phenotype.Here we provide an overview of the fundamental logic and critical assumptions of these models. We then derive predictions that can be used to distinguish between theories. In doing so, we also highlight ambiguities in and overlap between the predictions they make, with a goal of motivating further research. In addition, we suggest some areas for future work that will test some of these predictions.  相似文献   

12.
Genomic imprinting is the differential expression of maternally and paternally inherited alleles of specific genes. Several organismic level hypotheses have been offered to explain the evolution of genomic imprinting. We argue that evolutionary explanations of the origin of imprinting that focus exclusively on the organismic level are incomplete. We propose that the complex molecular mechanisms that underlie genomic imprinting originally evolved as an adaptive response to the mutagenic potential of transposable elements (TEs). We also present a model of how these mechanisms may have been co-opted by natural selection to evolve molecular features characteristic of genomic imprinting.  相似文献   

13.
Wolf JB  Hager R 《PLoS biology》2006,4(12):e380
Imprinted genes are expressed either from the maternally or paternally inherited copy only, and they play a key role in regulating complex biological processes, including offspring development and mother–offspring interactions. There are several competing theories attempting to explain the evolutionary origin of this monoallelic pattern of gene expression, but a prevailing view has emerged that holds that genomic imprinting is a consequence of conflict between maternal and paternal gene copies over maternal investment. However, many imprinting patterns and the apparent overabundance of maternally expressed genes remain unexplained and may be incompatible with current theory. Here we demonstrate that sole expression of maternal gene copies is favored by natural selection because it increases the adaptive integration of offspring and maternal genomes, leading to higher offspring fitness. This novel coadaptation theory for the evolution of genomic imprinting is consistent with results of recent studies on epigenetic effects, and it provides a testable hypothesis for the origin of previously unexplained major imprinting patterns across different taxa. In conjunction with existing hypotheses, our results suggest that imprinting may have evolved due to different selective pressures at different loci.  相似文献   

14.
Intralocus sexual conflict can drive the evolution of genomic imprinting   总被引:4,自引:0,他引:4  
Day T  Bonduriansky R 《Genetics》2004,167(4):1537-1546
Genomic imprinting is a phenomenon whereby the expression of an allele differs depending upon its parent of origin. There is an increasing number of examples of this form of epigenetic inheritance across a wide range of taxa, and imprinting errors have also been implicated in several human diseases. Various hypotheses have been put forward to explain the evolution of genomic imprinting, but there is not yet a widely accepted general hypothesis for the variety of imprinting patterns observed. Here a new evolutionary hypothesis, based on intralocus sexual conflict, is proposed. This hypothesis provides a potential explanation for much of the currently available empirical data, and it also makes new predictions about patterns of genomic imprinting that are expected to evolve but that have not, as of yet, been looked for in nature. This theory also provides a potential mechanism for the resolution of intralocus sexual conflict in sexually selected traits and a novel pathway for the evolution of sexual dimorphism.  相似文献   

15.
Mechanisms of genomic imprinting.   总被引:14,自引:0,他引:14  
A small number of mammalian genes undergo the process of genomic imprinting whereby the expression level of the alleles of a gene depends upon their parental origin. In the past year, attention has focused on the mechanisms that determine parental-specific expression patterns. Many imprinted genes are located in conserved clusters and, although it is apparent that imprinting of adjacent genes is jointly regulated, multiple mechanisms among and within clusters may operate. Recent developments have also refined the timing of the gametic imprints and further defined the mechanism by which DNA methyltransferases confer allelic methylation patterns.  相似文献   

16.
17.
The theory of inclusive fitness can be modified to consider separate coefficients of relatedness for an individual''s maternal and paternal alleles. A gene is said to have parentally antagonistic effects if it has an inclusive fitness benefit when maternally derived, but an inclusive fitness cost when paternally derived (or vice versa). Parental antagonism favours the evolution of alleles that are expressed only when maternally derived or only when paternally derived (genomic imprinting).  相似文献   

18.
Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells.  相似文献   

19.
E B Keverne 《Heredity》2014,113(2):138-144
Evolution of mammalian reproductive success has witnessed a strong dependence on maternal resources through placental in utero development. Genomic imprinting, which has an active role in mammalian viviparity, also reveals a biased role for matrilineal DNA in its regulation. The co-existence of three matrilineal generations as one (mother, foetus and post-meiotic oocytes) has provided a maternal niche for transgenerational co-adaptive selection pressures to operate. In utero foetal growth has required increased maternal feeding in advance of foetal energetic demands; the mammary glands are primed for milk production in advance of birth, while the maternal hypothalamus is hormonally primed by the foetal placenta for nest building and post-natal care. Such biological forward planning resulted from maternal–foetal co-adaptation facilitated by co-expression of the same imprinted allele in the developing hypothalamus and placenta. This co-expression is concurrent with the placenta interacting with the adult maternal hypothalamus thereby providing a transgenerational template on which selection pressures may operate ensuring optimal maternalism in this and the next generation. Invasive placentation has further required the maternal immune system to adapt and positively respond to the foetal allotype. Pivotal to these mammalian evolutionary developments, genomic imprinting emerged as a monoallelic gene dosage regulatory mechanism of tightly interconnected gene networks providing developmental genetic stability for in utero development.  相似文献   

20.
Inactivation of expression of the paternal allele at two maternally silent imprinted loci has recently been reported to diminish the quality of care that female mice lavish on their offspring. This suggests that there can be disagreement between the maternally and paternally derived genomes of mothers over how much care for offspring is appropriate, with the paternally derived genome favoring greater care. The reason for such disagreement is not obvious because the maternally and paternally derived alleles at a locus have equal probabilities of being transmitted to each of the mother's ova and, therefore, would appear to have equal interests in a mother's offspring. However, if a female mates with a related male, her two alleles may have different probabilities of being present in the sperm that fertilize her ova. Natural selection can favor silencing of the maternally derived allele at a locus that enhances the quality of maternal care if the average patrilineal relatedness between a female and her mates decreases more rapidly than the average matrilineal relatedness. Just such an asymmetrical decrease in relatedness over time would be expected in a structured population in which patrilineal inbreeding is more common than matrilineal inbreeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号