首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel assay for oxytetracycline hydrochloride (OTC) based on fluorescence quenching was developed from the interaction between functionalized cadmium telluride quantum dots (CdTe QDs) and OTC. Optimum conditions for the detection of OTC were found after investigating all factors. Under optimum conditions, luminescence of CdTe nanocrystals (λex = 365 nm, λem = 562 nm) was quenched by OTC in a concentration‐dependent manner best described by a modified Stern‐Volmer type equation. Good linearity was obtained with a regression coefficient of 0.9999 in the range of 1.34 ~ 13.4 x 10‐5 mol/L and a limit of detection of 3.08 x 10‐7 mol/L. In addition, the quenching mechanism was also established. The results imply that the close proximity of OTC‐CdTe was driven by electrostatic attraction and the resulting effective electron transfer from OTC to QDs could be responsible for fluorescence quenching of CdTe‐QDs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Fluorescent bovine serum albumin‐confined silver nanoclusters (BSA–AgNCs) were demonstrated to be a novel and environmentally friendly probe for the rapid detection of biothiols such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH). The sensing was ascribed to the strong affinity between the mercapto group of the biothiols and the silver nanoclusters. The fluorescence intensity of BSA–AgNCs was quenched efficiently on increasing the concentration of biothiol, corresponding with a red‐shift in emission wavelength. However, the fluorescence of the silver nanoclusters was almost unchanged in the presence of other α‐amino acids at 10‐fold higher concentrations. By virtue of this specific response, a new, simple and rapid fluorescent method for detecting biothiols has been developed. The linear ranges for Cys, Hcy and GSH were 2.0 × 10‐6 to 9.0 × 10‐5 M (R2 = 0.994), 2.0 × 10‐6 to 1.2 × 10‐4 M (R2 = 0.996) and 1.0 × 10‐5 to 8.0 × 10‐5 M (R2 = 0.980), respectively. The detection limits were 8.1 × 10‐7 M for Cys, 1.0 × 10‐6 M for Hcy and 1.1 × 10‐6 M for GSH. Our proposed method was successfully applied to the determination of thiols in human plasma and the recovery was 94.83–105.24%. It is potentially applicable to protein‐stabilized silver nanoclusters in a chemical or biochemical sensing system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In view of the significance of nitrofurantoin, there is an urgent need for efficient analytical methods for accurate detection of nitrofurantoin. Considering their superior fluorescence performance and rarity of reports regarding nitrofurantoin detection by fluorescent silver nanoclusters (Ag NCs), Ag NCs with good stability and uniform size were synthesized through a simple method by protection of histidine (His) and reduction of ascorbic acid (AA). Based on the quenching by nitrofurantoin, Ag NCs were applied successfully in the detection of nitrofurantoin with high sensitivity. In the range of 0.5–150 μM, a linear relationship was found between ln(F0/F) and nitrofurantoin amounts. Static quenching and inner filter effect were proved to be the main quenching mechanisms. Significantly superior selectivity and satisfactory recovery results in bovine serum indicate that Ag NCs provide a better choice for nitrofurantoin detection.  相似文献   

4.
Fluorescent silver nanoclusters (Ag NCs) displaying dual-excitation and dual-emission properties have been developed for the specific detection of NAD+ (nicotinamide adenine dinucleotide, oxidized form). With the increase of NAD+ concentrations, the longer wavelength emission (with the peak at 550 nm) was gradually quenched due to the strong interactions between the NAD+ and Ag NCs, whereas the shorter wavelength emission (peaking at 395 nm) was linearly enhanced. More important, the dual-emission intensity ratio (I395/I550), fitting by a single-exponential decay function, can efficiently detect various NAD+ levels from 100 to 4000 μM, as well as label NAD+/NADH (reduced form of NAD) ratios in the range of 1–50.  相似文献   

5.
Tannic acid‐coated copper nanoclusters (CuNCs@TA) were synthesized and used quantitatively to analyze iodine in kelp. Compared with other methods for iodine detection, the proposed method showed excellent performance. The iodine‐induced linear decrease in the fluorescence intensity of CuNCs@TA allowed the quantitative detection of iodine in the range 20–100 μM, and the limit of detection for iodine was 18 nM. The probe can be used for the determination of iodine in real samples with reliable and accurate results. Modified Stern–Volmer equation and thermodynamic calculation studies were used to discuss the quenching mechanism.  相似文献   

6.
Fluorescence quenching behavior of artificial food colorant quinoline yellow (QY), on interaction with l ‐cysteine stabilized copper nanoclusters (l ‐Cys‐CuNCs) is investigated in this work. For this purpose, l ‐cysteine stabilized CuNCs were synthesized and characterized using various analytical techniques. Results demonstrated that the synthesized probe (size ~2 nm) had very promising optical features such as bright blue fluorescence, significant quantum yield and excellent photostability. l ‐Cys‐CuNCs can function as a fluorescence sensor by selectively sensing QY among other yellow colorants, giving a detection limit as low as 0.11 μM. The developed sensor exhibited a linear concentration range from 5.50 to 0.20 μM. The developed fluorescence assay was successfully applied for testing commercial samples, thereby making this sensing strategy significant for quality control of food stuffs.  相似文献   

7.
A new fluorimetric aptasensor was designed for the determination of adenosine triphosphate (ATP) based on magnetic nanoparticles (MNPs) and carbon dots (CDs). In this analytical strategy, an ATP aptamer was conjugated on MNPs and a complementary strand of the aptamer (CS) was labeled with CDs. The aptamer and its CS were hybridized to form a double helical structure. The hybridized aptamers could be used for the specific recognition of ATP in a biological complex matrix using a strong magnetic field to remove the interfering effect. In the absence of ATP, no CDs–CS could be released into the solution and this resulted in a weak fluorescence signal. In the presence of ATP, the target binds to its aptamer and causes the dissociation of the double helical structure and liberation of the CS, such that a strong fluorescence signal was generated. The increased fluorescence signal was proportional to ATP concentration. The limit of detection was estimated to be 1.0 pmol L–1 with a dynamic range of 3.0 pmol L–1 to 5.0 nmol L–1. The specific aptasensor was applied to detect ATP in human serum samples with satisfactory results. Moreover, molecular dynamic simulation (MDS) studies were used to analyze interactions of the ATP molecule with the aptamer.  相似文献   

8.
Sensitive detection of doxorubicin (DOX) is critical for clinical theranostics. A novel ratiometric fluorescence strategy based on the inner filter effect (IFE) has been established for the sensitive detection of DOX by designing a ratiometric fluorescence probe. In the presence of DOX, the fluorescence intensity of copper nanoclusters (CuNCs) at 485 nm decreases, and the fluorescence intensity of carbon dots at 560 nm increases. Therefore, DOX can be quantitatively detected by measuring the ratio of the fluorescence intensities at 560 and 485 nm (F560/F485). The F560/F485 ratio exhibits a linear correlation with the DOX concentration in the range from 1.0 × 10−8 M to 1.0 × 10−4 M with the detection limit of 3.7 nM. Furthermore, this method was also successfully applied to the analysis of DOX in human plasma samples, affording an effective platform for drug safety management.  相似文献   

9.
There is a significant need to accurately measure doxycycline concentrations in view of the adverse effects of an overdose on human health. A fluorescence (FL) detection method was adopted and copper nanoclusters (CuNCs) were synthesized using chemical reduction technology. Based on FL quenching with doxycycline, the prepared CuNCs were used to explore a fluorescent nanoprobe for doxycycline detection. In an optimal sensing environment, this FL nanosensor was sensitive and selective in doxycycline sensing and displayed a linear relationship in the range 0.5–200 μM with a detection limit of 0.092 μΜ. A characterization test demonstrated that CuNCs offered active functional groups for identifying doxycycline using electrostatic interaction and hydrogen bonds. Static quenching and the inner filter effect (IFE) resulted in weakness in the FL of His@CuNCs with doxycycline with great efficiency. This suggested nanosensor was revealed to be a functional model for simple and rapid detection of doxycycline in real samples with very pleasing accuracy.  相似文献   

10.
In this work, we reported a simple and sensitive method to detect biothiols, such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), using fluorescent silver nanoclusters (Ag NCs) stabilized by single-stranded DNA (DNA-Ag NCs) as probes. The photoluminescence intensity of DNA-Ag NCs was found to be quenched effectively with the increase of biothiols concentration due to the formed nonfluorescent coordination complex between DNA-Ag NCs and biothiols, resulting in the shift-to-red of emission wavelength. But the fluorescence of DNA-Ag NCs was not changed in the presence of other amino acids at 10-fold higher concentration. Satisfactory detection limits and linear relationships of Cys, GSH and Hcy were obtained, respectively. The resulted plots exhibited good linear relationships in the range from 8.0×10(-9) to 1.0×10(-7) mol L(-1) (R(2)=0.984) for Cys, 8.0×10(-9) to 1.0×10(-7) mol L(-1) (R(2)=0.983) for GSH, and 2.0×10(-6) to 6.0×10(-7) mol L(-1) (R(2)=0.999) for Hcy, respectively; the detection limits of Cys, GSH and Hcy were 4.0 nmol L(-1), 4.0 nmol L(-1), and 0.2 μmol L(-1), respectively. The method was successfully used for the detection of biothiols in human plasma samples.  相似文献   

11.
In the study, we have developed an expedient and efficient method for the detection of theophylline based on the amplification of the signal intensity of fluorescence based on oxidized single-walled carbon nanohorns (oxSWCNHs)/cryonase. When theophylline was not present in the system, oxSWCNHs can adequately adsorb nucleic acid probes labeled by carboxyfluorescein (FAM). In the presence of theophylline, the nucleic acid probe forms the tertiary probe–theophylline complex, which detaches from the surface of the oxSWCNHs. Then, upon reaction with cryonase, the complex can release the FAM and theophylline into the next cycle. The fluorescence signal of the system exhibits a 1:N magnification, enabling quantitative detection of theophylline. The linear range was 30–150 ng/mL, and the limit of detection (LOD) was 6.04 ng/mL. At the same time, it can also be used to detect theophylline in mouse serum.  相似文献   

12.
In this paper, an innovative and facile one‐pot method for synthesizing water‐soluble and stable fluorescent Cu nanoclusters (CuNCs), in which glutathione (GSH) served as protecting ligand and ascorbic acid (AA) as reducing agent was reported. The resultant CuNCs emitted blue‐green fluorescence at 440 nm, with a quantum yield (QD) of about 3.08%. In addition, the prepared CuNCs exhibited excellent properties such as good water solubility, photostability and high stability toward high ionic strength. On the basis of the selective quenching of Hg2+ on CuNCs fluorescence, which may be the result of Hg2+ ion‐induced aggregation of the CuNCs, the CuNCs was used for the selective and sensitive determination of Hg2+ in aqueous solution. The proposed analytical strategy permitted detection of Hg2+ in a linear range of 4 × 10?8 to 6 × 10?5 M, with a detection limit of 2.2 × 10?8 M. Eventually, the practicability of this sensing approach was confirmed by its successful application to assay Hg2+ in tap water, Lotus lake water and river water samples with the quantitative spike recoveries ranging from 96.9% to 105.4%.  相似文献   

13.
抗生素作为一种微生物的次级代谢产物,具有杀死或抑制微生物生长的作用。抗生素的滥用导致了它在食物中的残留量逐年增加。因此,需要建立一种快速灵敏检测方法用于食品中抗生素残留量的检测。核酸适配体传感器因其高选择性、高特异性和高灵敏性等优点而备受关注。同时,借助纳米材料独特的光、电特性,能够进一步提高适配体传感器的性能。本文综述了目前用于抗生素检测的核酸适配体传感器如荧光适配体传感器、比色适配体传感器和电化学适配体传感器等的研究进展。此外,还对该研究领域面临的挑战和未来前景进行了展望。  相似文献   

14.
[目的]利用季也蒙毕赤酵母ZJC-1合成银纳米团簇并用于痕量Cr(Ⅵ)的检测.[方法]使用经耐银驯化的季也蒙毕赤酵母ZJC-1生物合成荧光银纳米团簇,并对其结构和荧光性能进行了表征,探究Cr(Ⅵ)对银纳米团簇荧光的选择性猝灭作用,建立了银纳米团簇荧光强度与Cr(Ⅵ)浓度的线性关系.同时还考察了体系pH和其他金属离子对C...  相似文献   

15.
Herein, we report the selective binding of Ag+ ion by the anthracene‐based chalcone receptor 1. Receptor 1 behaves as a selective and sensitive chemosensor for the recognition of Ag+ over other heavy and transition metal ions without any interference and is capable of detecting the metal ion down to 0.15 × 10?6 M. Receptor 1 on binding with Ag+ ions exhibits a ratiometric fluorescence enhancement, which is due to the inhibition of photoinduced electron transfer along with the intramolecular charge transfer mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive and selective fluorimetric sensor for the assay of ascorbic acid (AA) using silver nanoparticles as emission reagent was investigated. In this study, silver nanoparticles were prepared based on aqueous–gaseous phase reaction of silver nitrate solution and ammonia gas. The nanoparticles were water‐soluble, stable and had a narrow emission band. They were used as a fluorescence probe for the assay of ascorbic acid on its quenching effect on the emission of silver nanoparticles. The principal reason for quenching is likely to be a complexation between ascorbic acid and silver nanoparticles. The quenching mechanism was established by Stern–Volmer law. Under the optimum conditions, the quenched fluorescence intensity was linear with the concentration of ascorbic acid in the range of 4.1 × 10?6 to 1.0 ×10?4 m (= 0.9985) with a detection limit of 1.0 × 10?7 m . The RSD for repeatability of the sensor for the assay of ascorbic acid concentration of 3.0 × 10?5 and 4.0 × 10?6 m was found to be 1.5 and 1.3%, respectively. The proposed method was applied to the determination of ascorbic acid in vegetables and vitamin C tablets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, fluorescent metal nanoclusters are presented as novel probes for sensitive detection of protease for the first time. The sensing mechanism is based on trypsin digestion of the protein template of BSA-stabilized Au nanoclusters. The decrease in fluorescence intensity of BSA-Au nanoclusters caused by trypsin allows the sensitive detection of trypsin in the range of 0.01-100 μg/mL. The detection limit for trypsin is 2 ng/mL (86 pM) at a signal-to-noise ratio of 3. The present nanosensor for trypsin detection possesses red emission, excellent biocompatibility, high selectivity, and good stability. In addition, we demonstrated the application of the present approach in real urine samples, which suggested its potential for diagnostic purposes.  相似文献   

18.
Sensing of pyrophosphate ion (PPi) has received much attention due to the strong demand for clinical diagnostics. Here, based on gold nanoclusters (Au NCs), a ratiometric optical detection method for PPi is developed by simultaneously detecting the dual signals of fluorescence (FL) and second-order scattering (SOS). The PPi is detected by inhibiting the formation of aggregates of Fe3+ with Au NCs. Binding of Fe3+ to Au NCs causes aggregation of Au NCs, which leads to fluorescence quenching and scattering increasing. The presence of PPi can competitively bind Fe3+ to re-disperse the Au NCs and finally recover the fluorescence and reduce the scattering signal. The designed PPi sensor shows a high sensitivity with a linear range 5–50 μM and a detection limit of 1.2 μM. In addition, the assay has excellent selectivity for PPi, which makes its application in real biological samples extremely valuable.  相似文献   

19.
In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号