首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The highly organized pattern of acetylcholinesterase (AChE) molecules attached to the basal lamina of the neuromuscular junction (NMJ) suggests the existence of specific binding sites for their precise localization. To test this hypothesis we immunoaffinity purified quail globular and collagen-tailed AChE forms and determined their ability to attach to frog NMJs which had been pretreated with high-salt detergent buffers. The NMJs were visualized by labeling acetylcholine receptors (AChRs) with TRITC-α-bungarotoxin and AChE by indirect immunofluorescence; there was excellent correspondence (>97%) between the distribution of frog AChRs and AChE. Binding of the exogenous quail AChE was determined using a speciesspecific monoclonal antibody. When frog neuromuscular junctions were incubated with the globular G4/G2 quail AChE forms, there was no detectable binding above background levels, whereas when similar preparations were incubated with the collagen-tailed A12 AChE form >80% of the frog synaptic sites were also immunolabeled for quail AChE attached. Binding of the A12 quail AChE was blocked by heparin, yet could not be removed with high salt buffer containing detergent once attached. Similar results were obtained using empty myofiber basal lamina sheaths produced by mechanical or freeze-thaw damage. These experiments show that specific binding sites exist for collagen-tailed AChE molecules on the synaptic basal lamina of the vertebrate NMJ and suggest that these binding sites comprise a “molecular parking lot” in which the AChE molecules can be released, retained, and turned over.  相似文献   

2.
Congenital myasthenic syndromes are caused by mutations in molecules expressed at the neuromuscular junction. Collagen Q (ColQ) makes a triple helical structure and anchors the catalytic subunit of acetylcholinesterase (AChE) to the synaptic basal lamina in the form of asymmetric AChE. Mutations in the collagen Q gene (COLQ) cause endplate AChE deficiency. As an initial step to develop a novel therapeutic strategy for endplate acetylcholinesterase deficiency, we expressed AChE species in cultured cells using retrovirus and adeno-associated virus (AAV). The retroviral vectors carried human ACHE and COLQ either in a single construct (EF1alpha-ACHE-IRES-COLQ) or in two separate constructs (EF1alpha-ACHE and EF1alpha-COLQ). We produced high-titer retroviruses using the PLAT-E retrovirus packaging cells. We also confirmed expression of asymmetric AChE in the PLAT-E cells. We infected NIH3T3 and confirmed expression of the transgenes by RT-PCR. The AAV vector carried human COLQ-IRES-EGFP downstream of the CMV promoter (pAAV-CMV-COLQ-IRES-EGFP). We produced recombinant AAV using HEK293 cells carrying pDF6 encoding the AAV6 capsid gene. We infected AAVHT1080 cells and confirmed expression of COLQ by RT-PCR and EGFP by flow cytometry. We are currently trying to achieve further higher expression levels of transgenes in cultured cells to make the current strategy applicable to an animal model.  相似文献   

3.
Congenital myasthenic syndromes (CMSs) are a heterogeneous group of genetic disorders affecting neuromuscular transmission. The agrin/muscle-specific kinase (MuSK) pathway is critical for proper development and maintenance of the neuromuscular junction (NMJ). We report here an Iranian patient in whom CMS was diagnosed since he presented with congenital and fluctuating bilateral symmetric ptosis, upward gaze palsy and slowly progressive muscle weakness leading to loss of ambulation. Genetic analysis of the patient revealed a homozygous missense mutation c.2503A>G in the coding sequence of MUSK leading to the p.Met835Val substitution. The mutation was inherited from the two parents who were heterozygous according to the notion of consanguinity. Immunocytochemical and electron microscopy studies of biopsied deltoid muscle showed dramatic changes in pre- and post-synaptic elements of the NMJs. These changes induced a process of denervation/reinnervation in native NMJs and the formation, by an adaptive mechanism, of newly formed and ectopic NMJs. Aberrant axonal outgrowth, decreased nerve terminal ramification and nodal axonal sprouting were also noted. In vivo electroporation of the mutated MuSK in a mouse model showed disorganized NMJs and aberrant axonal growth reproducing a phenotype similar to that observed in the patient’s biopsy specimen. In vitro experiments showed that the mutation alters agrin-dependent acetylcholine receptor aggregation, causes a constitutive activation of MuSK and a decrease in its agrin- and Dok-7-dependent phosphorylation.  相似文献   

4.
Mutation in the PROM1 gene previously has been identified in one family with retinal degeneration for which neither ERG recordings nor detailed information about visual impairment is available. A large family with multiple individuals affected by retinal degeneration was ascertained in the Punjab province of Pakistan. The visual acuity of all affected patients in the family was severely compromised beginning in early childhood. The retinal disease in this family is a severe form of retinitis pigmentosa (RP) accompanied by macular degeneration. Fundus changes advanced with age. Choriocapillaris atrophy and posterior RPE atrophy were obvious allowing visualization of the large choroidal vessels in patients over 40 years of age. Rod and cone responses on ERG recordings were extinguished in patient’s teens. A genome-wide scan mapped the disease to a 34.7 cM region of chromosome 4p14–p16 between D4S1599 and D4S405. A maximum lod score of 3.96 with D4S403 and D4S391 is seen at θ = 0. Sequence analysis of PROM1 located in the linkage interval identified a c.1726C>T homozygous transition in exon 15: resulting in p.Gln576X in the translated protein. This mutation is found in a homozygous state in all six affected individuals and was heterozygous in five of the six unaffected family members examined. The mutation was not detected in 192 chromosomes of unrelated control individuals of the same ethnicity and from the same region. This delineates the phenotypic characteristics of retinopathy caused by mutations in PROM1. Qingjiong Zhang, Fareeha Zulfiqar, Xueshan Xiao, Sheikh Riazuddin and J. Fielding Hejtmancik contributed equally.  相似文献   

5.
Tetra-amelia is a rare human genetic disorder characterized by complete absence of all four limbs and other anomalies. We studied a consanguineous family with four affected fetuses displaying autosomal recessive tetra-amelia and craniofacial and urogenital defects. By homozygosity mapping, the disease locus was assigned to chromosome 17q21, with a maximum multipoint LOD score of 2.9 at markers D17S931, D17S1785, D17SS1827, and D17S1868. Further fine mapping defined a critical interval of approximately 8.9 Mb between D17S1299 and D17S797. We identified a homozygous nonsense mutation (Q83X) in the WNT3 gene in affected fetuses of the family. WNT3, a human homologue of the Drosophila wingless gene, encodes a member of the WNT family known to play key roles in embryonic development. The Q83X mutation truncates WNT3 at its amino terminus, suggesting that loss of function is the most likely cause of the disorder. Our findings contrast with the observation of early lethality in mice homozygous for null alleles of Wnt3. To our knowledge, this is the first report of a mutation in a WNT gene associated with a Mendelian disorder. The identification of a WNT3 mutation in tetra-amelia indicates that WNT3 is required at the earliest stages of human limb formation and for craniofacial and urogenital development.  相似文献   

6.
The asymmetric (20S) form of acetylcholinesterase (AChE) in 1-day-old chick muscle is a hybrid enzyme containing both AChE (110 kd) and butyrylcholinesterase (BuChE, 72 kd) catalytic subunits. However, we now report that the asymmetric AChE extracted or immunopurified from older adult chicken muscles, where it is the endplate form, shows a progressive developmental loss of the BuChE subunit and its activities, centred around 4 weeks of age, while the AChE and collagenous subunits remain. In confirmation, using differential labelling and co-sedimentation it was shown that the hybrid 20S AChE/BuChE form of 1-day chick muscle is gradually and completely replaced during muscle maturation by a 21.3S form, also collagen-tailed but otherwise homogeneous in AChE catalytic subunits. Two other changes occur concomitantly. Firstly, the AChE catalytic subunit of the adult form has a lower apparent mol. wt in gel electrophoresis, by 5 kd, than the same subunit in the 1-day hybrid enzyme; this difference does not reside in the carbohydrate attachments. Secondly, the collagen tail changes, in that some conformation-dependent epitopes on it disappear in the same period. Hence, a major reorganization of the asymmetric AChE, involving all three types of subunit, occurs in the course of muscle development.  相似文献   

7.
The collagen-tailed form of acetylcholinesterase (A(12)-AChE) appears to be localized at the neuromuscular junction in association with the transmembrane dystroglycan complex through binding of its collagenic tail (ColQ) to the proteoglycan perlecan. The heparan sulfate binding domains (HSBD) of ColQ are thought to be involved in anchoring ColQ to the synaptic basal lamina. The C-terminal domain (CTD) of ColQ is also likely involved, but there has been no direct evidence. Mutations in COLQ cause endplate AChE deficiency in humans. Nine previously reported and three novel mutations are in CTD of ColQ, and most CTD mutations do not abrogate formation of A(12)-AChE in transfected COS cells. Patient endplates, however, are devoid of AChE, suggesting that CTD mutations affect anchoring of ColQ to the synaptic basal lamina. Based on our observations that purified AChE can be transplanted to the heterologous frog neuromuscular junction, we tested insertion competence of nine naturally occurring CTD mutants and two artificial HSBD mutants. Wild-type human A(12)-AChE inserted into the frog neuromuscular junction, whereas six CTD mutants and two HSBD mutants did not. Our studies establish that the CTD mutations indeed compromise anchoring of ColQ and that both HSBD and CTD are essential for anchoring ColQ to the synaptic basal lamina.  相似文献   

8.
Congenital end-plate acetylcholinesterase (AChE) deficiency (CEAD), the cause of a disabling myasthenic syndrome, arises from defects in the COLQ gene, which encodes the AChE triple-helical collagenlike-tail subunit that anchors catalytic subunits of AChE to the synaptic basal lamina. Here we describe a patient with CEAD with a nonsense mutation (R315X) and a splice-donor-site mutation at position +3 of intron 16 (IVS16+3A-->G) of COLQ. Because both A and G are consensus nucleotides at the +3 position of splice-donor sites, we constructed a minigene that spans exons 15-17 and harbors IVS16+3A-->G for expression in COS cells. We found that the mutation causes skipping of exon 16. The mutant splice-donor site of intron 16 harbors five discordant nucleotides (at -3, -2, +3, +4, and +6) that do not base-pair with U1 small-nuclear RNA (snRNA), the molecule responsible for splice-donor-site recognition. Versions of the minigene harboring, at either +4 or +6, nucleotides complementary to U1 snRNA restore normal splicing. Analysis of 1,801 native splice-donor sites reveals that presence of a G nucleotide at +3 is associated with preferential usage, at positions +4 to +6, of nucleotides concordant to U1 snRNA. Analysis of 11 disease-associated IVS+3A-->G mutations indicates that, on average, two of three nucleotides at positions +4 to +6 fail to base-pair, and that the nucleotide at +4 never base-pairs, with U1 snRNA. We conclude that, with G at +3, normal splicing generally depends on the concordance that residues at +4 to +6 have with U1 snRNA, but other cis-acting elements may also be important in assuring the fidelity of splicing.  相似文献   

9.
Hereditary hemochromatosis (HH) is an autosomal recessive disease caused by a defective iron absorption. C282Y is the most frequent HFE gene mutation causing HH in Northern European populations and their descendants. However, two other mutations, H63D and S65C, have been described as pathogenic changes. In this study, we have tried to evaluate the frequency of these three mutations in our community. Eighty-three patients with clinical and/or biochemical features of hemochromatosis and 150 controls were screened for H63D, S65C, and C282Y mutations using a PCR-restriction fragment length polymorphism (RFLP)-based strategy. In contrast to previous studies, 7% of the patients were homozygous for C282Y mutation. The remaining patients were 20% H63D homozygous, 10% H63D/C282Y compound heterozygous, 1% H63D/S65C compound heterozygous, 22% H63D heterozygous, 2% C282Y heterozygous, 2% S65C heterozygous, and 36% of patients lacked any of the three mutations studied, despite the fact that they showed clinical/biochemical features of hemochromatosis. We observed a high frequency of the H63D mutation in both the control group and patients, whereas the main genotypes implicated in HH in our series were H63D homozygous and H63D/C282Y compound heterozygous. We propose that the H63D mutation be analyzed in HH patients from our geographic area. Moreover, further studies are needed to elucidate the role of this mutation in the development of HH and the genetic, environmental or other factors that affect the genotype-phenotype correlation between H63D and hemochromatosis.  相似文献   

10.
The expression of acetylcholinesterase (AChE) in skeletal muscle is regulated by muscle activity; however, the underlying molecular mechanisms are incompletely understood. We show here that the expression of the synaptic collagen-tailed AChE form (ColQ-AChE) in quail muscle cultures can be regulated by muscle activity post-translationally. Inhibition of thiol oxidoreductase activity decreases expression of all active AChE forms. Likewise, primary quail myotubes transfected with protein disulfide isomerase (PDI) short hairpin RNAs showed a significant decrease of both the intracellular pool of all collagen-tailed AChE forms and cell surface AChE clusters. Conversely, overexpression of PDI, endoplasmic reticulum protein 72, or calnexin in muscle cells enhanced expression of all collagen-tailed AChE forms. Overexpression of PDI had the most dramatic effect with a 100% increase in the intracellular ColQ-AChE pool and cell surface enzyme activity. Moreover, the levels of PDI are regulated by muscle activity and correlate with the levels of ColQ-AChE and AChE tetramers. Finally, we demonstrate that PDI interacts directly with AChE intracellularly. These results show that collagen-tailed AChE form levels induced by muscle activity can be regulated by molecular chaperones and suggest that newly synthesized exportable proteins may compete for chaperone assistance during the folding process.  相似文献   

11.
Inheritance of chromosomes 3 and 11 in the families with Chuvash autosomal recessive polycythemia and in control group with no disease symptoms was examined using polymorphic dinucleotide markers D3S1597 and D3S1263, mapped to region 3p25, and D11S4111, D11S4127, and D11S1356, mapped to region 11q23. All patients were homozygous for the C598T mutation in the VHL gene (3p25). The analysis showed that in 75% of the cases, chromosome 3 carrying C598T mutation was coinherited with certain chromosome 11, which differed from 50%, expected upon independent inheritance of each chromosome. In case of chromosome 3 without C598T mutation, this pattern was observed neither in healthy sibs form the families with autosomal recessive polycythemia (44%), nor in the control group (43%). These results suggest that in case of the C598T mutation in the VHL gene, chromosomal loci 3p25 and 11q23 are inherited not independently, compared to the inheritance of these loci in the absence of the mutation in healthy sibs from the affected families (chi2 = 16.14; P < 0.001), and also in the control family sample (chi2 = 17.91; P < 0.001).  相似文献   

12.

Background

In order to confirm a previous finding of linkage to alcoholism on chromosome 1 we have carried out a genetic linkage study.

Methods

DNA from eighteen families, densely affected by alcoholism, was used to genotype a set of polymorphic microsatellite markers at loci approximately 10 centimorgans apart spanning the short arm and part of the long arm of chromosome 1. Linkage analyses were performed using the classical lod score and a model-free method. Three different definitions of affection status were defined, these were 1. Heavy Drinking (HD) where affected subjects drank more than the Royal College of Psychiatrists recommended weekly amount. 2. The Research Diagnostic Criteria for alcoholism (RDCA) 3. Alcohol Dependence Syndrome (ADS) as defined by Edwards and Gross (1976) and now incorporated into ICD10 and DSMIV.

Results

Linkage analyses with the markers D1S1588, D1S2134, D1S1675 covering the cytogenetic region 1p22.1-11.2 all gave positive two point and multipoint lods with a maximum lod of 1.8 at D1S1588 (1p22.1) for the RDCA definition of alcoholism. Another lod of 1.8 was found with D1S1653 in the region 1q21.3-24.2 using the HD affection model.

Conclusion

These results both support the presence of linkage in the 1p22.1-11.2 region which was previously implicated by the USA Collaborative Study of the Genetics of Alcoholism (COGA) study and also suggest the presence of another susceptibility locus at 1q21.3-24.2.  相似文献   

13.
Autosomal-recessive inheritance is believed to be relatively common in mental retardation (MR), although only four genes for nonsyndromic autosomal-recessive mental retardation (ARMR) have been reported. In this study, we ascertained a consanguineous Pakistani family with ARMR in four living individuals from three branches of the family, plus an additional affected individual later identified as a phenocopy. Retinitis pigmentosa was present in affected individuals, but no other features suggestive of a syndromic form of MR were found. We used Affymetrix 500K microarrays to perform homozygosity mapping and identified a homozygous and haploidentical region of 11.2 Mb on chromosome 4p15.33-p15.2. Linkage analysis across this region produced a maximum two-point LOD score of 3.59. We sequenced genes within the critical region and identified a homozygous splice-site mutation segregating in the family, within a coiled-coil and C2 domain-containing gene, CC2D2A. This mutation leads to the skipping of exon 19, resulting in a frameshift and a truncated protein lacking the C2 domain. Conservation analysis for CC2D2A suggests a functional domain near the C terminus as well as the C2 domain. Preliminary functional studies of CC2D2A suggest a possible role in Ca(2+)-dependent signal transduction. Identifying the function of CC2D2A, and a possible common pathway with CC2D1A, in correct neuronal development and functioning may help identify possible therapeutic targets for MR.  相似文献   

14.
Inheritance of chromosomes 3 and 11 in the families with Chuvash autosomal recessive polycythemia and in control group with no disease symptoms was examined using polymorphic dinucleotide markers D3S1597 and D3S1263, mapped to region 3p25, and D11S4111, D11S4127, and D11S1356, mapped to region 11q23. All patients were homozygous for the C598T mutation in the VHL gene (3p25). The analysis showed that in 75% of the cases, chromosome 3 carrying C598T mutation was coinherited with certain chromosome 11, which differed from 50%, expected upon independent inheritance of each chromosome. In case of chromosome 3 without C598T mutation, this pattern was observed neither in healthy sibs form the families with autosomal recessive polycythemia (44%), nor in the control group (43%). These results suggest that in case of the C598T mutation in the VHL gene, chromosomal loci 3p25 and 11q23 are inherited not independently, compared to the inheritance of these loci in the absence of the mutation in healthy sibs from the affected families χ2 = 16.14, p < 0.001), and also in the control family sample (χ2 = 17.91, p < 0.001).  相似文献   

15.
The possibility that organophosphorus (OP) compounds contribute to motor neuron disease (MND) is supported by association of paraoxonase 1 polymorphisms with amyotrophic lateral sclerosis (ALS) and the occurrence of MND in OP compound-induced delayed neuropathy (OPIDN), in which neuropathy target esterase (NTE) is inhibited by organophosphorylation. We evaluated a consanguineous kindred and a genetically unrelated nonconsanguineous kindred in which affected subjects exhibited progressive spastic paraplegia and distal muscle wasting. Affected subjects resembled those with OPIDN and those with Troyer Syndrome due to SPG20/spartin gene mutation (excluded by genetic linkage and SPG20/spartin sequence analysis). Genome-wide analysis suggested linkage to a 22 cM homozygous locus (D19S565 to D19S884, maximum multipoint LOD score 3.28) on chromosome 19p13 to which NTE had been mapped (GenBank AJ004832). NTE was a candidate because of its role in OPIDN and the similarity of our patients to those with OPIDN. Affected subjects in the consanguineous kindred were homozygous for disease-specific NTE mutation c.3034A-->G that disrupted an interspecies conserved residue (M1012V) in NTE's catalytic domain. Affected subjects in the nonconsanguineous family were compound heterozygotes: one allele had c.2669G-->A mutation, which disrupts an interspecies conserved residue in NTE's catalytic domain (R890H), and the other allele had an insertion (c.2946_2947insCAGC) causing frameshift and protein truncation (p.S982fs1019). Disease-specific, nonconserved NTE mutations in unrelated MND patients indicates NTE's importance in maintaining axonal integrity, raises the possibility that NTE pathway disturbances contribute to other MNDs including ALS, and supports the role of NTE abnormalities in axonopathy produced by neuropathic OP compounds.  相似文献   

16.
Heparan sulfate and heparin, two sulfated glycosaminoglycans (GAGs), extracted collagen-tailed acetylcholinesterase (AChE) from the extracellular matrix (ECM) of the electric organ of Discopyge tschudii. The effect of heparan sulfate and heparin was abolished by protamine; other GAGs could not extract the esterase. The solubilization of the asymmetric AChE apparently occurs through the formation of a soluble AChE-GAG complex of 30S. Heparitinase treatment but not chondroitinase ABC treatment of the ECM released asymmetric AChE forms. This provides direct evidence for the vivo interaction between asymmetric AChE and heparan sulfate residues of the ECM. Biochemical analysis of the electric organ ECM showed that sulfated GAGs bound to proteoglycans account for 5% of the total basal lamina. Approximately 20% of the total GAGs were susceptible to heparitinase or nitrous acid oxidation which degrades specifically heparan sulfates, and approximately 80% were susceptible to digestion with chondroitinase ABC, which degrades chondroitin-4 and -6 sulfates and dermatan sulfate. Our experiments provide evidence that asymmetric AChE and carbohydrate components of proteoglycans are associated in the ECM; they also indicate that a heparan sulfate proteoglycan is involved in the anchorage of the collagen-tailed AChE to the synaptic basal lamina.  相似文献   

17.
Numerous studies have shown that the acetylcholine receptor (AChR) is inserted in the plasma membrane of the muscle fiber, and that it is focalized at the site of neuromuscular junctions, as an effect of neural influence. In contrast, acetylcholinesterase (AChE) may be presynaptic or anchored in the basal lamina, as well as postsynaptic at neuromuscular junctions. We investigated the origin of the junctional enzyme, particularly the collagen-tailed asymmetric A12 forms, by studying the AChE contents of heterologous rat and chicken neuromuscular cocultures by immunohistochemical and biochemical methods. We found that the overall content of AChE, in the neuromuscular cocultures, including the A12 form, was essentially identical to the sum of the contents of separate myotube and motoneuron cultures. The sedimentation coefficients of the rat and chicken asymmetric forms are sufficiently different to clearly differentiate these enzymes in sucrose gradients: 16 S for rat, 20 S for chicken A12 AChE. Sedimentation analyses of AChE in cocultures thus showed that the A12 form was of muscular origin. In the case of aneural cultures of myotubes, histochemical staining of AChE activity or immunohistochemical staining with specific antibodies showed only very scarce, faint concentrations of enzyme. Some patches of acetylcholine receptor (AChR) were, however, visible in these cultures. Neuromuscular contacts are readily established in cocultures of myotubes with embryonic motoneurons from spinal cords. In the presence of motoneurons, the myotubes presented a larger number of AChR patches. The most remarkable feature of neuromuscular cocultures was the presence of numerous intense AChE patches which always coincided with AChR clusters. By specifically staining nerve terminals with tetanus toxin, we could show an excellent correlation between neuromuscular contacts and the presence of AChE-AChR patches. We found that the AChE patches in heterologous cocultures could be stained exclusively by the anti-myotube AChE antiserum. The focalized enzyme is therefore exclusively, or very predominantly, provided by the myotube.  相似文献   

18.
Limb-girdle muscular dystrophy type 2H (LGMD2H) is a mild autosomal recessive myopathy that was first described in the Manitoba Hutterite population. Previous studies in our laboratory mapped the causative gene for this disease to a 6.5-Mb region in chromosomal region 9q31-33, flanked by D9S302 and D9S1850. We have now used additional families and a panel of 26 microsatellite markers to construct haplotypes. Twelve recombination events that reduced the size of the candidate region to 560 kb were identified or inferred. This region is flanked by D9S1126 and D9S737 and contains at least four genes. Exons of these genes were sequenced in one affected individual, and four sequence variations were identified. The families included in our study and 100 control individuals were tested for these variations. On the basis of our results, the mutation in the tripartite-motif-containing gene (TRIM32) that replaces aspartate with asparagine at position 487 appears to be the causative mutation of LGMD2H. All affected individuals were found to be homozygous for D487N, and this mutation was not found in any of the controls. This mutation occurs in an NHL (named after the proteins NCL1, HT2A, and LIN-41) domain at a position that is highly conserved. NHL domains are known to be involved in protein-protein interactions. Although the function of TRIM32 is unknown, current knowledge of the domain structure of this protein suggests that it may be an E3-ubiquitin ligase. If proven, this represents a new pathogenic mechanism leading to muscular dystrophy.  相似文献   

19.
Hereditary hemochromatosis causes iron overload and is associated with a variety of genetic and phenotypic conditions. Early diagnosis is important so that effective treatment can be administered and the risk of tissue damage avoided. Most patients are homozygous for the c.845G>A (p.C282Y) mutation in the HFE gene; however, rare forms of genetic iron overload must be diagnosed using a specific genetic analysis. We studied the genotype of 5 patients who had hyperferritinemia and an iron overload phenotype, but not classic mutations in the HFE gene. Two patients were undergoing phlebotomy and had no iron overload, 1 with metabolic syndrome and no phlebotomy had mild iron overload, and 2 patients had severe iron overload despite phlebotomy. The patients' first-degree relatives also underwent the analysis. We found 5 not previously published mutations: c.-408_-406delCAA in HFE, c.1118G>A (p.G373D), c.1473G>A (p.E491E) and c.2085G>C (p.S695S) in TFR2; and c.-428_-427GG>TT in SLC40A1. Moreover, we found 3 previously published mutations: c.221C>T (p.R71X) in HFE; c.1127C>A (p.A376D) in TFR2; and c.539T>C (p.I180T) in SLC40A1. Four patients were double heterozygous or compound heterozygous for the mutations mentioned above, and the patient with metabolic syndrome was heterozygous for a mutation in the TFR2 gene. Our findings show that hereditary hemochromatosis is clinically and genetically heterogeneous and that acquired factors may modify or determine the phenotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号