首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, binding interactions of artemisinin (ART) and dihydroartemisinin (DHA) with human serum albumin (HSA) and bovine serum albumin (BSA) were investigated thoroughly to illustrate the conformational variation of serum albumin. Experimental results indicated that ART and DHA bound strongly with the site I of serum albumins via hydrogen bond (H-bond) and van der Waals force and subsequently statically quenched the intrinsic fluorescence of serum albumins through concentration-dependent manner. The quenching abilities of two drugs on the intrinsic fluorescence of HSA were much higher than the quenching abilities of two drugs on the intrinsic fluorescence of BSA. Both ART and DHA, especially DHA, caused the conformational variation of serum albumins and reduced the α-helix structure content of serum albumins. DHA with hydrophilic hydroxyl group bound with HSA more strongly, suggesting the important roles of the chemical polarity and the hydrophilicity during the binding interactions of two drugs with serum albumins. These results reveal the molecular understanding of binding interactions between ART derivatives and serum albumins, providing vital information for the future application of ART derivatives in biological and clinical areas.  相似文献   

2.
Bilirubin (BR) binding properties of serum albumins from different mammalian species viz. human (HSA), equine (ESA), dog (DSA) and guinea pig (GPSA) were studied by absorption, fluorescence and CD spectroscopy. Whereas, a complex of BR with ESA produced maximum change, GPSA–BR complex showed weaker interaction as reflected from absorption and fluorescence spectroscopic data. Conformational analysis of these albumins by near- and far-UV CD spectra suggested similar structural characteristics (both secondary and tertiary structures) for ESA and HSA, whereas, DSA and GPSA had lower amounts of secondary and tertiary structures being minimum for GPSA. Photoirradiation results of BR–albumin complexes showed GPSA-bound BR more labile compared with other complexes, whereas, BR–ESA complex was found to be more stable against photoinduced chemical changes. Taken together, all these results suggest that chiroptical properties/stability of albumin bound BR varies with albumin species.  相似文献   

3.
The fluorescence probe ANS(8-anilino-1-naphthalenesulfonic acid) was employed as a reporter group molecule for circular dichroism and fluorescence measurements in order to investigate the effects of stearic acid and sodium dodecylsulfate on the conformation of bovine and human serum albumin. Stearate as well as dodecylsulfate displaces ANS from the binding to both albumins. Besides this displacement, stearate and dodecylsulfate influence the fluorescence properties and the extrinsic Cotton effects on ANS bound to both albumins. It is suggested that the origin of these effects is a microdisorganization of the albumin structure, provoked by the binding of stearate and sodium dodecylsulfate. Each of the four extrinsic CD bands of bound ANS was influenced in a different manner by the addition of stearate and dodecylsulfate. Using the data of the fluorescence measurements and of the circular dichroism measurements it was possible to differentiate the effects of one ligand on both albumins and of both ligands on one albumin more efficiently than would have been possible using one of the two methods alone. It is suggested that the use of ANS as a reporter group molecule for fluorescence and circular dichroism measurements is a very good tool to detect small changes in the environment of ligand binding sites on protein molecules.  相似文献   

4.
Khan MM  Muzammil S  Tayyab S 《Biochimie》2000,82(3):203-209
Chloroform-induced conformational changes of bilirubin (BR) bound to different serum albumins were studied by circular dichroism (CD) and fluorescence spectroscopy. Addition of a small amount of chloroform ( approximately 20 mM) to a solution containing 20 microM albumin and 15 microM BR changed the sign order and magnitude of the characteristic CD spectra of all BR-albumin complexes except BR-PSA complex which showed abnormal behavior. Monosignate negative CD Cotton effects (CDCEs) of BR complexed with SSA, GSA and BuSA were transformed into bisignate CDCEs in presence of chloroform akin to those exhibited by chloroform free solution of BR-HSA complex, indicating that the pigment acquired right handed plus (P) chirality when chloroform was added to these complexes. Bisignate CD spectra of BR complexed with HSA and BSA showed complete inversion upon addition of chloroform corroborating earlier findings. On the other hand, changes observed with BR-RSA complex were slightly different showing an additional CD band of weak intensity centered around 390 nm though inversion of CDCEs was similar to that of BR-HSA complex. Monosignate CD spectra of BR-PSA complex also showed three CD bands occurring at 409, 470 and 514 nm after chloroform addition. These results indicated significant but different effects of chloroform on the conformation of bound BR in BR-albumin complexes which can be ascribed to the changes in the exciton chirality of bilirubin probably due to altered hydrophobic microenvironment induced by the binding of chloroform at or near the ligand binding site. Chloroform severely quenched the intrinsic tryptophan fluorescence of the protein and shifted the emission maxima towards blue region in all the albumins except PSA. However, quantitative differences in both quenching and blue shift were noted in different serum albumins. This suggests that chloroform probably binds in the close vicinity of tryptophan residue(s) located in subdomain(s) IIA or IB and II both. The fluorescence of BR-albumin complexes was also found to be sensitive to the presence of a small amount of chloroform. But the changes observed in the fluorescence of the bound pigment in presence of chloroform were less marked as compared to the changes in the intrinsic fluorescence of protein per se. Taken together, these results suggest that there is at least one conserved site for chloroform binding in all these albumins which is at or near the BR binding site.  相似文献   

5.
Pistolozzi M  Bertucci C 《Chirality》2008,20(3-4):552-558
Drug binding to albumins from different mammalian species was investigated to disclose evidence of species-dependent stereoselectivity in drug-binding processes and affinities. This aspect is important for evaluating the reliability of extrapolating distribution data among species. The circular dichroism (CD) signal induced by drug binding to the albumins [human serum albumin (HSA), bovine serum albumin (BSA), rat serum albumin (RSA), and dog serum albumin (DSA)] were measured and analyzed. The binding of selected drugs and metabolites to HSA significantly differed from the binding to the other albumins in terms of affinity and conformation of the bound ligands. In particular, phenylbutazone, a marker of site one on HSA, showed a higher affinity for binding to BSA with respect to RSA, HSA, and DSA, respectively. In the case of diazepam, a marker of site two on HSA, the affinity decreased in order from HSA to DSA, RSA, and BSA. The induced CD spectra were similar in terms of energy and band signs, suggesting almost the same conformation for the bound drug to the different albumins. Stereoselectivity was high for the binding of ketoprofen to HSA and RSA. A different sign was observed for the CD spectra induced by the drug to the two albumins because of the prevalence of a different conformation of the bound drug. Interestingly, the same induced CD spectra were obtained using either the racemic form or the (S)-enantiomer. Finally, significant differences were observed in the affinity of bilirubin, being highest for BSA, then decreasing for RSA, HSA, and DSA. A more complex conformational equilibrium was observed for bound bilirubin.  相似文献   

6.
Although the interactions between bilirubin and serum albumin are among the most studied serum albumin-ligand interactions, the binding-site location and the participation of bilirubin-serum albumin complexes in pathological and physiological processes are under debate. In this article, we have benefited from the chiral structure of bilirubin and used CD spectroscopy to characterize the structure of bilirubin bound to human and bovine serum albumins. We determined that in a phosphate buffer at pH 7.8 there are three binding sites in both human and bovine serum albumins. While the primary binding sites in human and bovine serum albumins bind bilirubin with P- and M-helical conformations, respectively, the secondary binding sites in both albumins bind bilirubin in the P-helical conformation. We have shown that the bonding of bilirubin to the serum albumin matrix is a more favorable process than the self-association of bilirubin under the studied conditions, with a maximum of three bound bilirubins per serum albumin molecule. Although bilirubin bound to the primary binding site has attracted the most attention, the presented results have documented the impact of the secondary binding sites which are relevant in the displacement reactions between BR and drugs and in the phenomena where bilirubin plays antioxidant, antimutagenic, and anti-inflammatory roles. Chirality 00:000000, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Exogenous drugs that are used as antidote against chemotheray, inflammation or viral infection, gets absorbed and interacts reversibly to the major serum transport protein i.e. albumins, upon entering the circulatory system. To have a structural guideline in the rational drug designing and in the synthesis of drugs with greater efficacy, the binding mechanism of an antineoplastic and anti-inflammatory drug Nordihydroguaiaretic acid (NDGA) with human and bovine serum albumins (HSA & BSA) were examined by spectroscopic and computational methods. NDGA binds to site II of HSA with binding constant (Kb) ~105 M-1 and free energy (ΔG) ~ -7.5 kcal.mol-1. It also binds at site II of BSA but with lesser binding affinity (Kb) ~105 M-1 and ΔG ~ -6.5 kcal.mol-1. The negative value of ΔG, ΔH and ΔS for both the albumins at three different temperatures confirmed that the complex formation process between albumins and NDGA is spontaneous and exothermic. Furthermore, hydrogen bonds and hydrophobic interactions are the main forces involved in complex formation of NDGA with both the albumins as evaluated from fluorescence and molecular docking results. Binding of NDGA to both the albumins alter the conformation and causes minor change in the secondary structure of proteins as indicated by the CD spectra.  相似文献   

8.
Several phage isolates that bind specifically to human serum albumin (HSA) were isolated from disulfide-constrained cyclic peptide phage-display libraries. The majority of corresponding synthetic peptides bind with micromolar affinity to HSA in low salt at pH 6.2, as determined by fluorescence anisotropy. One of the highest affinity peptides, DX-236, also bound well to several mammalian serum albumins (SA). Immobilized DX-236 quantitatively captures HSA from human serum; mild conditions (100 mM Tris, pH 9.1) allow release of HSA. The DX-236 affinity column bound HSA from human serum with a greater specificity than does Cibacron Blue agarose beads. In addition to its likely utility in HSA and other mammalian SA purifications, this peptide media may be useful in the proteomics and medical research markets for selective removal of mammalian albumin from serum prior to mass spectrometric and other analyses.  相似文献   

9.
The interaction of pinostrobin (PS), a multitherapeutic agent with serum albumins of various mammalian species namely, goat, bovine, human, porcine, rabbit, sheep and dog was investigated using fluorescence quench titration and competitive drug displacement experiments. Analysis of the intrinsic fluorescence quenching data revealed values of the association constant, Ka in the range of 1.49 – 6.12 × 104 M−1, with 1:1 binding stoichiometry. Based on the PS–albumin binding characteristics, these albumins were grouped into two classes. Ligand displacement studies using warfarin as the site I marker ligand correlated well with the binding data. Albumins from goat and bovine were found to be closely similar to human albumin on the basis of PS binding characteristics.  相似文献   

10.
The binding of suramin to bovine and human serum albumin was investigated by gel filtration and spectroscopic measurements. Besides some low-affinity binding sites suramin has, on the bovine serum albumin molecule one and on the human serum albumin molecule two, high-affinity binding sites. Spectroscopic measurements reveal that there are large differences between the albumins in the mechanism of binding to the high-affinity binding sites. Further, it is suggested that high concentrations of suramin provoke an unfolding of the albumin moleculse. In order to explain the unusual behaviour of suramin in connection with the displacement of other ligands from the albumin binding the fluorescence probe 1-anilino-8-naphthalenesulfonic acid (ANS) was employed as a reporter group molecule for fluorescence as well as circular dichroism measurements. By these measurements it could be shown that suramin greatly influences the microorganization of both albumin molecules. In the case of these measurements large differences between bovine and human serum albumin were also found.  相似文献   

11.
12.
C K Luk 《Biopolymers》1971,10(7):1229-1242
The effect of cupric ion on the emission of tryptophan, tyrosine, and serum albumins is studied by emission spectroscopy and lifetime measurements. It is found that whenever cupric ion is bound to tryptophan or tyrosine, their emissions are quenched completely. The quenching may be due to an electron transfer mechanism. The fluorescence of complexes of cupric ions with serum albumins is partially quenched; this is because energy is transferred from tryptophan to the complexed cupric ions by a dipolar energy transfer mechanism. It is deduced from the present study that the tryptophan in the human serum albumin molecule is between 11 and 16 Å from the nearest eupric ion binding sites (assumed to be at the surface of the protein) and that one of the tryptophan in the bovine serum albumin molecule is very close to the cupric ion binding sites and the other is near the center of the bovine serum albumin molecule. It is also found that the deuterium solvent effect on serum albumin fluorescence is very small, and that the quenching of bovine serum albumin fluorescence at the N-F transition is the result of quenching of the fluorescence of both tryptophans. The phosphorescence lifetime apparatus, capable of measuring decay times of signals with intensities changing over a few orders of magnitude, and the ratio spectrofluorometer, both of which were constructed in this laboratory, are also described.  相似文献   

13.
Bilirubin–albumin solution gave an emission spectrum in the wavelength range 500–600 nm with emission maxima at 528 nm when excited at 487 nm. The magnitude of fluorescence intensity increased on increasing bilirubin/albumin molar ratio. At three different albumin concentrations, namely, 1.0, 2.5 and 10.0 μM, there was an initial linear increase in fluorescence up to a molar ratio 1.0 in all cases beyond which it sloped off or decreased. This fluorescence enhancement was used to calculate the binding parameters of bilirubin–albumin interaction and the value of binding constant was found to be 1.72×107 l/mol similar to the published values obtained with other methods. Different serum albumins, namely, human (HSA), goat (GSA), pig (PSA) and dog serum albumins (DSA) bound bilirubin with almost the same affinity when studied by the technique of fluorescence enhancement. Bilirubin–albumin interaction was also studied at different pH and ionic strengths. There was a decrease in bilirubin–albumin complex formation on either decreasing the pH from 9.0 to 7.0 or increasing the ionic strength from 0.15 to 1.0. These results suggest that the technique of fluorescence enhancement can be used successfully to study the bilirubin–albumin interaction.  相似文献   

14.
Serum albumins have five sites for binding of cationic dendrimers   总被引:1,自引:0,他引:1  
The detailed analysis of the interaction between PAMAM G4 dendrimer and serum albumins was performed using circular dichroism, isothermal titration calorimetry, capillary electrophoresis, zeta-potential and fluorescence polarization. It was shown that serum albumins and PAMAM G4 dendrimer form the complex with stoichiometry of 4-6:1 for G4:HSA and 4-5:1 for G4:BSA molar ratio. The possible sites of PAMAM G4 dendrimers binding to protein surface were discussed. Also, it has been proposed that dendrimer does not significantly affect the protein secondary structure studied by circular dichroism.  相似文献   

15.
The interaction of Cibacron Blue F3G A-Sepharose 4B with several serum albumins was studied. Although all albumins used were fond to bind to this adsorbent, human serum albumin was bound to a far greater extent than were the others. From the results of competition experiments and n.m.r. studies of Cibacron Blue and/or bilirubin binding to human serum albumin it is proposed that the mechanism of the interaction between human serum albumin and cibacron Blue is consistent wit Cibacron Blue binding to bilirubin-binding sites. In contrast with these findings with human serum albumin, there is little or no interaction of Cibacron Blue and the bilirubin-binding sites of albumins from rabbit, horse, bovine or sheep sera, although some interaction occurs between Cibacron Blue and the fatty acid-binding sites of these proteins. Structural analogues of Cibacron Blue have been used to investigate the binding of albumins to these ligands.  相似文献   

16.
The novel two-color ratiometric fluorescence probe FA belonging to a class of 3-hydroxychromone dyes was applied for characterization of binding sites in serum albumins obtained from seven species (bovine, dog, horse, human, pig, rabbit and sheep). On strong and highly specific FA binding to the same location in protein structure, the species-dependent differences were observed in positions of absorption maxima, positions of two fluorescence emission bands and the intensity ratios between them. They were analyzed by multiparametric algorithm that allowed a detailed characterization of probe-binding sites and were characterized by very low polarity, high electronic polarizability and different extent of intermolecular hydrogen bonding. The species-dependent differences were also observed in time-resolved fluorescence emission decays. Fluorescence competition experiments with the drug warfarin, suggested the location of FA binding site within or in proximity to Domain IIA.  相似文献   

17.
After a meal rich in plant products, dietary flavonols can be detected in plasma as serum albumin-bound conjugates. Flavonol–albumin binding is expected to modulate the bioavailability of flavonols. In this work, the binding of structurally different flavonoids to human and bovine serum albumins is investigated by fluorescence spectroscopy using three methods: the quenching of the albumin fluorescence, the enhancement of the flavonoid fluorescence, the quenching of the fluorescence of the quercetin–albumin complex by a second flavonoid. The latter method is extended to probes whose high-affinity binding sites are known to be located in one of the two major subdomains (warfarin and dansyl-l-asparagine for subdomain IIA, ibuprofen and diazepam for subdomain IIIA). Overall, flavonoids display moderate affinities for albumins (binding constants in the range 1–15×104 M−1), flavones and flavonols being most tightly bound. Glycosidation and sulfation could lower the affinity to albumin by one order of magnitude depending on the conjugation site. Despite multiple binding of both quercetin and site probes, it can be proposed that the binding of flavonols primarily takes place in subdomain IIA. Significant differences in affinity and binding location are observed for the highly homologous HSA and BSA.  相似文献   

18.
After a meal rich in plant products, dietary flavonols can be detected in plasma as serum albumin-bound conjugates. Flavonol-albumin binding is expected to modulate the bioavailability of flavonols. In this work, the binding of structurally different flavonoids to human and bovine serum albumins is investigated by fluorescence spectroscopy using three methods: the quenching of the albumin fluorescence, the enhancement of the flavonoid fluorescence, the quenching of the fluorescence of the quercetin-albumin complex by a second flavonoid. The latter method is extended to probes whose high-affinity binding sites are known to be located in one of the two major subdomains (warfarin and dansyl-L-asparagine for subdomain IIA, ibuprofen and diazepam for subdomain IIIA). Overall, flavonoids display moderate affinities for albumins (binding constants in the range 1-15 x 10(4) M(-1)), flavones and flavonols being most tightly bound. Glycosidation and sulfation could lower the affinity to albumin by one order of magnitude depending on the conjugation site. Despite multiple binding of both quercetin and site probes, it can be proposed that the binding of flavonols primarily takes place in subdomain IIA. Significant differences in affinity and binding location are observed for the highly homologous HSA and BSA.  相似文献   

19.
The effect of sodium dodecyl sulfate (SDS) on human, bovine, porcine, rabbit and sheep serum albumins were investigated at pH 3.5 by using various spectroscopic techniques like circular dichroism (CD), intrinsic fluorescence and dynamic light scattering (DLS). In the presence of 4.0 mM SDS the secondary structure of all the albumins were not affected as measured by CD but fluorescence spectra revealed 8.0 nm blue shift in emission maxima. We further checked the stability of albumins in the absence and presence of 4.0 mM SDS by urea and temperature at pH 3.5. In the absence of SDS, urea starts unfolding both secondary as well as tertiary structural elements of the all the albumins at ∼2.0 M urea but in the presence of 4.0 mM SDS, urea was unable to unfold even up to 9.0 M. The albumins were thermally less stable at pH 3.5 with decrease in Tm but in the presence of 4.0 mM SDS, the Tm was increased. From this study, it was concluded that SDS is showing a protective effect against urea as well as thermal denaturation of albumins. This behavior may be due to electrostatic as well as the hydrophobic interaction of SDS with albumins. Further, we have proposed the mechanism of action of urea. It was found that urea interacted with proteins directly when proteins are in charged form. Indirect interaction may be taking place when the environment is more hydrophobic.  相似文献   

20.
1. Serum albumins from nine of 10 vertebrate species were found to react rapidly with p-nitrophenylacetate. 2. The high reactivities were shown to be partially attributable to strong, rapidly reversible binding of p-nitrophenylacetate by each serum albumin. 3. As previously observed in the case of human serum albumin (Koh and Means, Arch. Biochem. Biophys. 192, 73-79, 1979), this binding takes place in the primary binding site for several physiologically (i.e. tryptophan, small fatty acid anions) and pharmacologically (i.e. diazepam) important compounds. 4. Horse serum albumin differed from all other serum albumins included in this study in that it did not react rapidly with p-nitrophenylacetate, presumably, due to significant differences in its corresponding binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号