首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Oulmouden  F Karst 《Gene》1990,88(2):253-257
The ERG12 gene of Saccharomyces cerevisiae has been cloned by complementation of an erg12-1 mutation affecting mevalonate kinase. From the 2.8-kb insert isolated, the functional gene has been localized on a DNA fragment of 2.1 kb. The mRNA is 1.45 kb long. Gene disruption shows that the ERG12 gene is essential in yeast, both for spore germination and vegetative growth.  相似文献   

2.
Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1. 82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The gene encoding ethanolamine kinase (EKI1) was identified from the Saccharomyces Genome Data Base (locus YDR147W) based on its homology to the Saccharomyces cerevisiae CKI1-encoded choline kinase, which also exhibits ethanolamine kinase activity. The EKI1 gene was isolated and used to construct eki1Delta and eki1Delta cki1Delta mutants. A multicopy plasmid containing the EKI1 gene directed the overexpression of ethanolamine kinase activity in wild-type, eki1Delta mutant, cki1Delta mutant, and eki1Delta cki1Delta double mutant cells. The heterologous expression of the S. cerevisiae EKI1 gene in Sf-9 insect cells resulted in a 165,500-fold overexpression of ethanolamine kinase activity relative to control insect cells. The EKI1 gene product also exhibited choline kinase activity. Biochemical analyses of the enzyme expressed in insect cells, in eki1Delta mutants, and in cki1Delta mutants indicated that ethanolamine was the preferred substrate. The eki1Delta mutant did not exhibit a growth phenotype. Biochemical analyses of eki1Delta, cki1Delta, and eki1Delta cki1Delta mutants showed that the EKI1 and CKI1 gene products encoded all of the ethanolamine kinase and choline kinase activities in S. cerevisiae. In vivo labeling experiments showed that the EKI1 and CKI1 gene products had overlapping functions with respect to phospholipid synthesis. Whereas the EKI1 gene product was primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway, the CKI1 gene product was primarily responsible for phosphatidylcholine synthesis via the CDP-choline pathway. Unlike cki1Delta mutants, eki1Delta mutants did not suppress the essential function of Sec14p.  相似文献   

3.
4.
In eukaryotic cells, protein synthesis is regulated in response to various environmental stresses by phosphorylating the alpha subunit of the eukaryotic initiation factor 2 (eIF2alpha). Three different eIF2alpha kinases have been identified in mammalian cells, the heme-regulated inhibitor (HRI), the interferon-inducible RNA-dependent kinase (PKR) and the endoplasmic reticulum-resident kinase (PERK). A fourth eIF2alpha kinase, termed GCN2, was previously characterized from Saccharomyces cerevisiae, Drosophila melanogaster and Neurospora crassa. Here we describe the cloning of a mouse GCN2 cDNA (MGCN2), which represents the first mammalian GCN2 homolog. MGCN2 has a conserved motif, N-terminal to the kinase subdomain V, and a large insert of 139 amino acids located between subdomains IV and V that are characteristic of the known eIF2alpha kinases. Furthermore, MGCN2 contains a class II aminoacyl-tRNA synthetase domain and a degenerate kinase segment, downstream and upstream of the eIF2alpha kinase domain, respectively, and both are singular features of GCN2 protein kinases. MGCN2 mRNA is expressed as a single message of approximately 5.5 kb in a wide range of different tissues, with the highest levels in the liver and the brain. Specific polyclonal anti-(MGCN2) immunoprecipitated an eIF2alpha kinase activity and recognized a 190 kDa phosphoprotein in Western blots from either mouse liver or MGCN2-transfected 293 cell extracts. Interestingly, serum starvation increased eIF2alpha phosphorylation in MGCN2-transfected human 293T cells. This finding provides evidence that GCN2 is the unique eIF2alpha kinase present in all eukaryotes from yeast to mammals and underscores the role of MGCN2 kinase in translational control and its potential physiological significance.  相似文献   

5.
6.
Cloned cDNAs encoding both subunits of Drosophila melanogaster casein kinase II have been isolated by immunological screening of lambda gt11 expression libraries, and the complete amino acid sequence of both polypeptides has been deduced by DNA sequencing. The alpha cDNA contained an open reading frame of 336 amino acid residues, yielding a predicted molecular weight for the alpha polypeptide of 39,833. The alpha sequence contained the expected semi-invariant residues present in the catalytic domain of previously sequenced protein kinases, confirming that it is the catalytic subunit of the enzyme. Pairwise homology comparisons between the alpha sequence and the sequences of a variety of vertebrate protein kinase suggested that casein kinase II is a distantly related member of the protein kinase family. The beta subunit was derived from an open reading frame of 215 amino acid residues and was predicted to have a molecular weight of 24,700. The beta subunit exhibited no extensive homology to other proteins whose sequences are currently known.  相似文献   

7.
Previous studies have demonstrated that the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha), encoded by the SUI2 gene in the yeast Saccharomyces cerevisiae, is phosphorylated at Ser-51 by the GCN2 kinase in response to general amino acid control. Here we describe that yeast eIF-2 alpha is a constitutively phosphorylated protein species that is multiply phosphorylated by a GCN2-independent mechanism. 32Pi labeling and isoelectric focusing analysis of a SUI2+ delta gcn2 strain identifies eIF-2 alpha as radiolabeled and a single isoelectric protein species. Treatment of SUI2+ delta gcn2 strain extracts with phosphatase results in the identification of three additional isoelectric forms of eIF-2 alpha that correspond to the stepwise removal of three phosphates from the protein. Mutational analysis of SUI2 coupled with biochemical analysis of eIF-2 alpha maps the sites to the carboxyl region of SUI2 that correspond to Ser residues at amino acid positions 292, 294, and 301 that compose consensus casein kinase II sequences. 32Pi labeling or isoelectric focusing analysis of eIF-2 alpha from conditional casein kinase II mutants indicated that phosphorylation of eIF-2 alpha is abolished or dephosphorylated forms of eIF-2 alpha are detected when these strains are grown at the restrictive growth conditions. Furthermore, yeast casein kinase II phosphorylates recombinant wild-type eIF-2 alpha protein in vitro but does not phosphorylate recombinant eIF-2 alpha that contains Ser-to-Ala mutations at all three consensus casein kinase II sequences. These data strongly support the conclusion that casein kinase II directly phosphorylates eIF-2 alpha at one or all of these Ser amino acids in vivo. Although substitution of SUI2 genes mutated at these sites for the wild-type gene have no obvious effect on cell growth, one test that we have used appears to demonstrate that the inability to phosphorylate these sites has a physiological consequence on eIF-2 function in S. cerevisiae. Haploid strains constructed to contain Ser-to-Ala mutations at the consensus casein kinase II sequences in SUI2 in combination with a mutated allele of either the GCN2, GCN3, or GCD7 gene have synthetic growth defects. These genetic data appear to indicate that the modifications that we describe at the carboxyl end of the eIF-2 alpha protein are required for optimal eIF-2 function in S. cerevisiae.  相似文献   

8.
9.
10.
11.
12.
As a step toward understanding of the role of adenylate kinase (AK) in energy metabolism, we analyzed this enzyme in Drosophila melanogaster. The enzyme activities of all three AK isozymes were determined in cell-free extracts of flies, and their proteins were detected by Western blot analysis using polyclonal antibodies against the mammalian isozymes. A cDNA encoding adenylate kinase was isolated from D. melanogaster cDNA library. The cDNA encodes a 240-amino acid protein, which shows high similarity to bovine, human and rat AK2, and hence was named DAK2. Preliminary subcellular fractionation analysis indicated that DAK2 is localized in both cytoplasm and mitochondria. In situ hybridization to salivary gland polytene chromosomes revealed that the Dak2 gene is located at 60B on the right arm of the second chromosome.  相似文献   

13.
14.
The yeast PCK1 gene coding for phosphoenolpyruvate carboxykinase (PEPCK) was isolated by functional complementation of pck1 strains from S. cerevisiae. Only one copy of the gene was found per haploid yeast genome. An RNA of about 2 kb which hybridized with a DNA probe internal to the PCK1 gene was found only in cells growing in non-fermentable carbon sources. Yeast strains carrying multiple copies of the PCK1 gene showed normal catabolite repression of PEPCK except those carrying the shortest insertion complementing the mutation (2.2 kb) that presented an altered kinetics of derepression. Catabolite inactivation was decreased in strains transformed with multicopy plasmids carrying the PCK1 gene.  相似文献   

15.
16.
We synthesized a DNA probe specific for the gene encoding eucaryotic DNA topoisomerase I by the polymerase chain reaction. The sequences of the primers for this reaction were deduced from the regions with extensive homology among the enzymes from the fission and budding yeasts, and the human. From the clones isolated by screening a Drosophila cDNA library with this DNA probe, two cDNA clones of 3.8 and 5.2 kb were characterized and completely sequenced. Both cDNA sequences contain an identical open reading frame for 972 amino acid residues. The 3.8 kb messenger RNA is likely generated by using a polyadenylation site 5' upstream to that used in generating the 5.2 kb mRNA. The predicted amino acid sequence shows that a segment of 420 amino acid residues at the amino terminus is hydrophilic, similar to the amino terminal 200 residues in the yeast and human enzymes. Furthermore, the Drosophila enzyme is unique in that the amino terminal 200 residues are enriched in serine and histidine residues; most of them are present in clusters. The rest of the Drosophila sequence is highly homologous to those from yeast and human enzymes. The evolutionarily conserved residues are identified and are likely the critical elements for the structure and function of this enzyme. A plasmid vector containing the cloned cDNA was constructed for the expression of Drosophila protein in Escherichia coli. The enzymatic and immunochemical analysis of the polypeptide produced in this heterologous expression system demonstrated that the expressed protein shares similar enzymatic properties and antigenic epitopes with DNA topoisomerase I purified from Drosophila embryos or tissue culture cells, thus establishing the bacterial expression system being useful for the future structure/function analysis of the Drosophila enzyme.  相似文献   

17.
The protein kinase DAI is activated upon viral infection of mammalian cells and inhibits protein synthesis by phosphorylation of the alpha subunit of translation initiation factor 2 (eIF-2 alpha). DAI is activated in vitro by double-stranded RNAs (dsRNAs), and binding of dsRNA is dependent on two copies of a conserved sequence motif located N terminal to the kinase domain in DAI. High-level expression of DAI in Saccharomyces cerevisiae cells is lethal because of hyperphosphorylation of eIF-2 alpha; at lower levels, DAI can functionally replace the protein kinase GCN2 and stimulate translation of GCN4 mRNA. These two phenotypes were used to characterize structural requirements for DAI function in vivo, by examining the effects of amino acid substitutions at matching positions in the two dsRNA-binding motifs and of replacing one copy of the motif with the other. We found that both copies of the dsRNA-binding motif are required for high-level kinase function and that the N-terminal copy is more important than the C-terminal copy for activation of DAI in S. cerevisiae. On the basis of these findings, we conclude that the requirements for dsRNA binding in vitro and for activation of DAI kinase function in vivo closely coincide. Two mutant alleles containing deletions of the first or second binding motif functionally complemented when coexpressed in yeast cells, strongly suggesting that the active form of DAI is a dimer. In accord with this conclusion, overexpression of four catalytically inactive alleles containing different deletions in the protein kinase domain interfered with wild-type DAI produced in the same cells. Interestingly, three inactivating point mutations in the kinase domain were all recessive, suggesting that dominant interference involves the formation of defective heterodimers rather than sequestration of dsRNA activators by mutant enzymes. We suggest that large structural alterations in the kinase domain impair an interaction between the two protomers in a DAI dimer that is necessary for activation by dsRNA or for catalysis of eIF-2 alpha phosphorylation.  相似文献   

18.
Erythroid expression of the heme-regulated eIF-2 alpha kinase.   总被引:2,自引:0,他引:2       下载免费PDF全文
The role of heme-regulated eIF-2 alpha kinase (HRI) in the regulation of protein synthesis in rabbit reticulocytes is well documented. Inhibitors of protein synthesis with properties similar to those of HRI have been described in some nonerythroid cell types, but it has not yet been determined whether these eIF-2 alpha kinase activities are mediated by HRI or one or more as yet uncharacterized kinases. We have studied the expression of mRNA, polypeptide, and kinase activities of HRI in various tissues from both nonanemic and anemic rabbits. Our results indicate that HRI is expressed in an erythroid cell-specific manner. HRI is present in the bone marrow and peripheral blood of both nonanemic and anemic rabbits but not in any of the other tissues tested. HRI mRNA is present at low levels in uninduced mouse erythroleukemic (MEL) cells and human K562 cells and accumulates to higher levels upon induction. The accumulation of HRI mRNA in differentiating MEL cells is dependent upon the presence of heme. The addition of 3-amino-1,2,4-triazole (AT), an inhibitor of heme biosynthesis, to the induction medium markedly reduced HRI mRNA accumulation. Simultaneous addition of hemin and AT to the dimethyl sulfoxide induction medium largely prevented the inhibition of HRI mRNA induction by AT. These findings indicate that HRI is expressed in an erythroid cell-specific manner and that the major physiologic role of HRI is in adjusting the synthesis of globins to the availability of heme.  相似文献   

19.
20.
We have isolated genomic and cDNA clones encoding protein synthesis initiation factor eIF-4E (mRNA cap-binding protein) of the yeast Saccharomyces cerevisiae. Their identity was established by expression of a cDNA in Escherichia coli. This cDNA encodes a protein indistinguishable from purified eIF-4E in terms of molecular weight, binding to and elution from m7GDP-agarose affinity columns, and proteolytic peptide pattern. The eIF-4E gene was isolated by hybridization of cDNA to clones of a yeast genomic library. The gene lacks introns, is present in one copy per haploid genome, and encodes a protein of 213 amino acid residues. Gene disruption experiments showed that the gene is essential for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号