共查询到20条相似文献,搜索用时 15 毫秒
1.
The origination of the peak at 730 nm in the delayed fluorescence (DF) spectrum of chloroplasts was studied using various optical analysis methods. The DF spectrum showed that the main emission peak was at about 685 nm, with a small shoulder at 730 nm when the chloroplast concentration was < 7.8 microg/mL. The intensity of the peak at 685 nm decreased, while the intensity of the peak at 730 nm increased, when the chloroplast concentrations were increased from 7.8 to 31.2 microg/mL. With the concentration increasing, the peak at 730 nm became dominant while the peak at 685 nm finally disappeared. The DF decay kinetic curves showed that the intensity of the peak at 730 nm decayed as the same speed as the intensity of the peak at 685 nm during the entire relaxation process (0.5-30.5 s). With the excitation wavelength at 685 nm, the emission intensity was stronger in the excitation spectrum at 730 nm. The absorption spectrum demonstrated that the ratio A(685):A(730) remained almost constant when the chloroplast concentration increased. The results suggest that the peak at 730 nm appearing in DF is mainly contributed by the fluorescence of photosystem I (PSI), generated by the re-absorption of 685 nm band DF. 相似文献
2.
NPQ(T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non‐photochemical quenching of excitons in photosystem‐II‐associated antenna complexes 下载免费PDF全文
Stefanie Tietz Christopher C. Hall Jeffrey A. Cruz David M. Kramer 《Plant, cell & environment》2017,40(8):1243-1255
In photosynthesis, light energy is absorbed by light‐harvesting complexes and used to drive photochemistry. However, a fraction of absorbed light is lost to non‐photochemical quenching (NPQ) that reflects several important photosynthetic processes to dissipate excess energy. Currently, estimates of NPQ and its individual components (qE, qI, qZ and qT) are measured from pulse‐amplitude‐modulation (PAM) measurements of chlorophyll fluorescence yield and require measurements of the maximal yield of fluorescence in fully dark‐adapted material (Fm), when NPQ is assumed to be negligible. Unfortunately, this approach requires extensive dark acclimation, often precluding widespread or high‐throughput use, particularly under field conditions or in imaging applications, while introducing artefacts when Fm is measured in the presence of residual photodamaged centres. To address these limitations, we derived and characterized a new set of parameters, NPQ(T), and its components that can be (1) measured in a few seconds, allowing for high‐throughput and field applications; (2) does not require full relaxation of quenching processes and thus can be applied to photoinhibited materials; (3) can distinguish between NPQ and chloroplast movements; and (4) can be used to image NPQ in plants with large leaf movements. We discuss the applications benefits and caveats of both approaches. 相似文献
3.
The influence of chilling (8 °C, 5 d) at two photon flux densities [PFD, L = 200 and H = 500 μmol(photon) m−2 s−1] on the gas exchange and chlorophyll fluorescence was investigated in chilling-tolerant and chilling-sensitive maize hybrids
(Zea mays L., K383×K130, K185×K217) and one cultivar of field bean (Vicia faba L. minor, cv. Nadwiślański). The net photosynthetic rate (P
N) for the both studied plant species was inhibited at 8 °C. P
N of both maize hybrids additionally decreased during chilling. Changes in the quantum efficiency of PS2 electron transport
(ΦPS2) as a response to chilling and PFD were similar to P
N. Measurements of ΦPS2/ΦCO2 ratio showed that in field bean seedlings strong alternative photochemical sinks of energy did not appear during chilling.
However, the high increment in ΦPS2/ΦCO2 for maize hybrids can indicate reactions associated with chill damage generation. At 8 °C the non-photochemical quenching
(NPQ) increased in all plants with chilling duration and PFD. The appearance of protective (qI,p) and damage (qI,d) components of qI and a decrease in qE (energy dependent quenching) took place. NPQ components of field bean and maize hybrids differed from each other. The amount
of protective NPQ (qE + qI,p) components as part of total NPQ was higher in field bean than in maize hybrids at both PFD. On 5th day of chilling, the sum of qE and qI,p was 26.7 % of NPQ in tolerant maize hybrids and 17.6 % of NPQ in the sensitive one (averages for both PFD). The increased
PFD inhibited the ability of all plants to perform protective dissipation of absorbed energy. The understanding of the genotypic
variation of NPQ components in maize may have implications for the future selection of plants with a high chilling tolerance. 相似文献
4.
Kamil Ciszak Milena Kulasek Anna Barczak Justyna Grzelak Sebastian Ma?kowski Stanis?aw Karpiński 《Plant signaling & behavior》2015,10(1)
Systemic acquired acclimation (SAA) is an important light acclimatory mechanism that depends on the global adjustments of non-photochemical quenching and chloroplast retrograde signaling. As the exact regulation of these processes is not known, we measured time-resolved fluorescence of chlorophyll a in Arabidopsis thaliana leaves exposed to excess light, in leaves undergoing SAA, and in leaves after excess light episode. We compare the behavior induced in wild-type plants with null mutant of non-photochemical quenching (npq4–1). The wild type rosettes exhibit a small reduction of fluorescence decay times in leaves directly exposed to excess light and in leaves undergoing SAA in ambient low light. However in npq4–1 exposition to excess light results in much faster fluorescence decay, which is insensitive to excitation power. At the same time npq4–1 leaves undergoing SAA displayed intermediate fluorescence decay. The npq4–1 plants also lost the ability to optimize florescence decay, and thus chlorophyll a dynamics up to 2 h after excess light episode. The fluorescence decay dynamics in both WT and npq4–1 can be described by a set of 3 maximum decay times. Based on the results, we concluded that functional PsbS is required for optimization of absorbed photon fate and optimal light acclimatory responses such as SAA or after excess light stress. 相似文献
5.
An instrument capable of imaging chlorophyll a fluorescence, from intact leaves, and generating images of widely used fluorescence parameters is described. This instrument, which is based around a fluorescence microscope and a Peltier-cooled charge-coupled device (CCD) camera, differs from those described previously in two important ways. First, the instrument has a large dynamic range and is capable of generating images of chlorophyll a fluorescence at levels of incident irradiance as low as 0.1 μmol m?2 s?1. Secondly, chlorophyll fluorescence, and consequently photosynthetic performance, can be resolved down to the level of individual cells and chloroplasts. Control of the instrument, as well as image capture, manipulation, analysis and presentation, are executed through an integrated computer application, developed specifically for the task. Possible applications for this instrument include detection of early and differential responses to environmental stimuli, including various types of stress. Images illustrating the instrument's capabilities are presented. 相似文献
6.
Photosynthetic CO2 uptake and chlorophyll (Chl) a fluorescence of C4 perennial grasses, Miscanthus floridulus (Labill) Warb and M. transmorrisonensis Hayata, from altitudes in central Taiwan
of 390 and 2700 m, respectively, were studied at 10 and 25 °C to find if the species differ in their photosynthetic responses
to a low temperature, and whether their photosystems 2 become more susceptible to the photoinhibition at low temperatures.
For both species, the maximum photosynthetic rate (Pmax) was reduced when the leaves were exposed to 10 °C. At irradiances higher than 400 μmol m-2 s-1, the values of Fv/Fm were reduced in both species at 10 °C but not at 25 °C, which indicated the photoinhibition at 10 °C. Reductions in Pmax and the values of Fv/Fm at 10 °C were lesser in M. transmorrisonensis than in M. floridulus.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
7.
Gerotto C Alboresi A Giacometti GM Bassi R Morosinotto T 《Plant, cell & environment》2011,34(6):922-932
Photosynthetic organisms respond to strong illumination by activating several photoprotection mechanisms. One of them, non-photochemical quenching (NPQ), consists in the thermal dissipation of energy absorbed in excess. In vascular plants NPQ relies on the activity of PSBS, whereas in the green algae Chlamydomonas reinhardtii it requires a different protein, LHCSR. The moss Physcomitrella patens is the only known organism in which both proteins are present and active in triggering NPQ, making this organism particularly interesting for the characterization of this protection mechanism. We analysed the acclimation of Physcomitrella to high light and low temperature, finding that these conditions induce an increase in NPQ correlated to overexpression of both PSBS and LHCSR. Mutants depleted of PSBS and/or LHCSR showed that modulation of their accumulation indeed determines NPQ amplitude. All mutants with impaired NPQ also showed enhanced photosensitivity when exposed to high light or low temperature, indicating that in this moss the fast-responding NPQ mechanism is also involved in long-term acclimation. 相似文献
8.
In intact, uncoupled type B chloroplasts from spinach, added ATP causes a slow light-induced decline () of chlorophyll a fluorescence at room temperature. Fluorescence spectra were recorded after fast cooling to 77 K and normalized with fluorescein as an internal standard. Related to the fluorescence quenching at room temperature, an increase in Photosystem (PS) I fluorescence (F735) and a decrease in PS II fluorescence (F695) were observed in the low-temperature spectra. The change in the ratio was abolished by the presence of methyl viologen. Fluorescence induction at 77 K of chloroplasts frozen in the quenched state showed lowered variable (Fv) and initial (F0) fluorescence at 690 nm and an increase in F0 at 735 nm. The results are interpreted as indicating an ATP-dependent change of the initial distribution of excitation energy in favor of PS I, which is controlled by the redox state of the electron-transport chain and, according to current theories, is caused by phosphorylation of the light-harvesting complex. 相似文献
9.
Excitation spectra of chlorophyll a fluorescence in chloroplasts from spinach and barley were measured at 4.2 K. The spectra showed about the same resolution as the corresponding absorption spectra. Excitation spectra for long-wave chlorophyll a emission (738 or 733 nm) indicate that the main absorption maximum of the photosystem (PS) I complex is at 680 nm, with minor bands at longer wavelengths. From the corresponding excitation spectra it was concluded that the emission bands at 686 and 695 nm both originate from the PS II complex. The main absorption bands of this complex were at 676 and 684 nm. The PS I and PS II excitation spectra both showed a contribution by the light-harvesting chlorophyll protein(s), but direct energy transfer from PS II to PS I was not observed at 4 K. Omission of Mg2+ from the suspension favored energy transfer from the light-harvesting protein to PS I. Excitation spectra of a chlorophyll b-less mutant of barley showed an average efficiency of 50–60% for energy transfer from β-carotene to chlorophyll a in the PS I and in the PS II complexes. 相似文献
10.
The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves 总被引:7,自引:0,他引:7
Bernard Genty Jeremy Harbinson Jean-Marie Briantais Neil R. Baker 《Photosynthesis research》1990,25(3):249-257
It has been suggested previously that non-photochemical quenching of chlorophyll fluorescence is associated with a decrease in the rate of photosystem 2 (PS 2) photochemistry. In this study analyses of fluorescence yield changes, induced by flashes in leaves exhibiting different amounts of non-photochemical quenching of fluorescence, are made to determine the effect of non-photochemical excitation energy quenching processes on the rate of PS 2 photochemistry. It is demonstrated that both the high-energy state and the more slowly relaxing components of non-photochemical quenching reduce the rate of PS 2 photochemistry. Flash dosage response curves for fluorescence yield show that non-photochemical quenching processes effectively decrease the relative effective absorption cross-section for PS 2 photochemistry. It is suggested that non-photochemical quenching processes exert an effect on the rate of PS 2 photochemistry by increasing the dissipation of excitation energy by non-radiative processes in the pigment matrices of PS 2, which consequently results in a decrease in the efficiency of delivery of excitation energy for PS 2 photochemistry. 相似文献
11.
Goral TK Johnson MP Duffy CD Brain AP Ruban AV Mullineaux CW 《The Plant journal : for cell and molecular biology》2012,69(2):289-301
We characterized a set of Arabidopsis mutants deficient in specific light-harvesting proteins, using freeze-fracture electron microscopy to probe the organization of complexes in the membrane and confocal fluorescence recovery after photobleaching to probe the dynamics of thylakoid membranes within intact chloroplasts. The same methods were used to characterize mutants lacking or over-expressing PsbS, a protein related to light-harvesting complexes that appears to play a role in regulation of photosynthetic light harvesting. We found that changes in the complement of light-harvesting complexes and PsbS have striking effects on the photosystem II macrostructure, and that these effects correlate with changes in the mobility of chlorophyll proteins within the thylakoid membrane. The mobility of chlorophyll proteins was found to correlate with the extent of photoprotective non-photochemical quenching, consistent with the idea that non-photochemical quenching involves extensive re-organization of complexes in the membrane. We suggest that a key feature of the physiological function of PsbS is to decrease the formation of ordered semi-crystalline arrays of photosystem II in the low-light state. Thus the presence of PsbS leads to an increase in the fluidity of the membrane, accelerating the re-organization of the photosystem II macrostructure that is necessary for induction of non-photochemical quenching. 相似文献
12.
Spectra of fluorescence polarization were measured between 4 and 120 K of spinach chloroplasts, oriented in a magnetic field. At least seven emission bands were observed. The well known bands near 685 nm (‘F-685’) and 735–740 nm (‘F-735’) and the band near 680 nm (‘F-680’) were strongly polarized parallel to the plane of the thylakoid membrane, whereas emission bands near 695 nm (‘F-695’), 710, 730–735 and 760 nm showed perpendicular polarization. Assuming perfect orientation of the thylakoid membranes, we calculated orientation angles of 64, 47 and 66.5° for the emission dipoles of F-685, F-695 and F-735, respectively, with respect to the normal of the membrane. Excitation spectra of F-695 and F-735 in polarized light at 4 K provided information about the orientation of the absorption dipoles of chlorophylls a and b. The spectra thus obtained were in very good agreement with the linear dichroism spectrum. Moreover, they allowed us to distinguish between the pigments associated with Photosystems I and Ii, which is not possible from measurement of linear dichroism alone. The results indicate that a high degree of orientation is not confined to the long-wave absorbing bands, but also bands at shorter wavelength show a clear anisotropy. The calculated orientations were in quantitative agreement with the hypothesis that F-685 and F-735 are associated with chlorophylls absorbing at 676 and 710–715 nm, respectively. 相似文献
13.
A transient in chlorophyll fluorescence, which is associated with a transient in 9-aminoacridine fluorescence and a perturbation in the rate of oxygen evolution, has been observed in intact spinach chloroplasts. The results indicate that changes in the redox state of Q are, at least partially, responsible for the transient in chlorophyll fluorescence. The size of the transient is highly dependent upon the concentration of inorganic phosphate and upon the pH of the medium. The properties of the transient are consistent with the suggestion that it reflects changes in the levels of stromal intermediates during induction.Abbreviations BES
NN-Bis(2-hydroxyethyl)2-aminoethanesulphonic acid dihydroxyacetone-P(DHAP): dihydroxyacetone phosphate glycerate-3-P (PGA): glycerate-3-phosphate
- HEPES
N-2-Hydroxyethylpiperazine-N-2-ethanesulphonic acid
- MES
2-(N-Morpholino)ethanesulphonic acid
- Pi
inorganic phosphate
- qE
quenching of chlorophyll fluorescence by the energisation of the thylakoid membrane
- qQ
quenching of chlorophyll fluorescence by oxidised Q, the electron acceptor of photosystem 2
- ribose-5-P (R5P)
ribose-5-phosphate
- Rbu-5-P
ribulose-5-phosphate 相似文献
14.
The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth 下载免费PDF全文
Hugues Nziengui Sonia Irigoyen Renáta Ünnep Ottó Zsiros Gergely Nagy Győző Garab Henrik Aronsson Wayne K. Versaw Cornelia Spetea 《The Plant journal : for cell and molecular biology》2015,84(1):99-110
The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content. When mutants were grown in high‐phosphate conditions, the leaf phosphorus levels increased and the growth phenotype was suppressed. Photosynthetic measurements indicated that in the absence of PHT4;1 stromal phosphate was reduced to levels that limited ATP synthase activity. This resulted in reduced CO2 fixation and accumulation of soluble sugars, limiting plant growth. The mutants also displayed faster induction of non‐photochemical quenching than the wild type, in line with the increased contribution of ΔpH to the proton‐motive force across thylakoids. Small‐angle neutron scattering showed a smaller lamellar repeat distance, whereas circular dichroism spectroscopy indicated a perturbed long‐range order of photosystem II (PSII) complexes in the mutant thylakoids. The absence of PHT4;1 did not alter the PSII repair cycle, as indicated by wild‐type levels of phosphorylation of PSII proteins, inactivation and D1 protein degradation. Interestingly, the expression of genes for several thylakoid proteins was downregulated in the mutants, but the relative levels of the corresponding proteins were either not affected or could not be discerned. Based on these data, we propose that PHT4;1 plays an important role in chloroplast phosphate compartmentation and ATP synthesis, which affect plant growth. It also maintains the ionic environment of thylakoids, which affects the macro‐organization of complexes and induction of photoprotective mechanisms. 相似文献
15.
Tiago Barros Antoine Royant Jörg Standfuss Andreas Dreuw Werner Kühlbrandt 《The EMBO journal》2009,28(3):298-306
Plants dissipate excess excitation energy as heat by non‐photochemical quenching (NPQ). NPQ has been thought to resemble in vitro aggregation quenching of the major antenna complex, light harvesting complex of photosystem II (LHC‐II). Both processes are widely believed to involve a conformational change that creates a quenching centre of two neighbouring pigments within the complex. Using recombinant LHC‐II lacking the pigments implicated in quenching, we show that they have no particular role. Single crystals of LHC‐II emit strong, orientation‐dependent fluorescence with an emission maximum at 680 nm. The average lifetime of the main 680 nm crystal emission at 100 K is 1.31 ns, but only 0.39 ns for LHC‐II aggregates under identical conditions. The strong emission and comparatively long fluorescence lifetimes of single LHC‐II crystals indicate that the complex is unquenched, and that therefore the crystal structure shows the active, energy‐transmitting state of LHC‐II. We conclude that quenching of excitation energy in the light‐harvesting antenna is due to the molecular interaction with external pigments in vitro or other pigment–protein complexes such as PsbS in vivo, and does not require a conformational change within the complex. 相似文献
16.
Matteo Ballottari Thuy B. Truong Eleonora De Re Erika Erickson Giulio R. Stella Graham R. Fleming Roberto Bassi Krishna K. Niyogi 《The Journal of biological chemistry》2016,291(14):7334-7346
Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp117, Glu221, and Glu224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide. 相似文献
17.
A model is presented describing the relationship between chlorophyll fluorescence quenching and photoinhibition of Photosystem (PS) II-dependent electron transport in chloroplasts. The model is based on the hypothesis that excess light creates a population of inhibited PS II units in the thylakoids. Those units are supposed to posses photochemically inactive reaction centers which convert excitation energy to heat and thereby quench variable fluorescence. If predominant photoinhibition of PS II and cooperativity in energy transfer between inhibited and active units are presumed, a quasi-linear correlation between PS II activity and the ratio of variable to maximum fluorescence, FVFM, is obtained. However, the simulation does not result in an inherent linearity of the relationship between quantum yield of PS II and FVFM ratio. The model is used to fit experimental data on photoinhibited isolated chloroplasts. Results are discussed in view of current hypotheses of photoinhibition.Abbreviations FM
maximum total fluorescence
- F0
initial fluorescence
- FV
maximum variable fluorescence
- PS
Photosystem
- QA, QB
primary and secondary electron acceptors of Photosystem II 相似文献
18.
Copper deficiency in wheat ( Triticum aestivum L. cv. Nazareno Stramppeli) markedly affects photosynthetic activity. Flag leaves of copper-deficient plants showed a 50% reduction of the photosynthetic rate expressed as mg CO2 dm−2 h−1 . The activities of PSI and PSII, determined for isolated chloroplasts, as well as fluorescence measurements on intact leaves of copper-deficient plants, indicated a low activity of photosynthetic electron transport. Ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity was not affected by copper deficiency but copper deficiency affected the chloroplast ultrastructure, especially at the level of grana, where a disorganization of thylakoids is evident. 相似文献
19.
In the present study, photosynthetic parameters including gas exchanges, pigment contents, and chlorophyll fluorescence, were compared in two contrasting local Medicago truncatula lines TN6.18 and TN8.20, in response to salt added to the nutrient solution. Plants were cultivated under symbiotic nitrogen fixation (SNF) after inoculation with a reference strain Sinorhizobium meliloti 2011, a very tolerant strain to salinity (700 mM NaCl), and grown in a controlled glasshouse. On one month old plants (with active SNF), salt treatment (75 mM NaCl) was gradually applied. Photosynthesis, assimilating pigments and chlorophyll fluorescence were monitored throughout the experiment during both short and long terms, compared to control (non-saline) conditions. A genotypic variation in salt tolerance was found; TN6.18 was the more sensitive to salinity. The relative tolerance of TN8.20 was concomitant with the highest photochemical quenching coefficient (qP) affecting the maximum quantum yield of PSII (Y); the real quantum yield (?exc) was the most affected in the sensitive line. Moreover, stomatal and PSII reaction centers activities differed clearly between the studied lines. We found that the effect of salinity on photosynthesis of M. truncatula was related to PSII activity reduction rather than to stomatal conductance limitation. Photosynthesis was reduced by the inhibition of CO2 assimilation caused by PSII damage. This was clearly estimated by the Y, ?exc and especially by the quantum yield of electron transport of PSII (ΦPSII). Thus, on the basis of our results on the two local M. truncatula lines, we recommend the use of chlorophyll fluorescence as non-destructive screening method to discriminate susceptible and resistant legumes to salt stress. 相似文献
20.
We tested the two empirical models of the relationship between chlorophyll fluorescence and photosynthesis, previously published by Weis E and Berry JA 1987 (Biochim Biophys Acta 894: 198–208) and Genty B et al. 1989 (Biochim Biophys Acta 990: 87–92). These were applied to data from different species representing different states of light acclimation, to species with C3 or C4 photosynthesis, and to wild-type and a chlorophyll b-less chlorina mutant of barley. Photosynthesis measured as CO2-saturated O2 evolution and modulated fluorescence were simultaneously monitored over a range of photon flux densities. The quantum yields of O2 evolution (ØO2) were based on absorbed photons, and the fluorescence parameters for photochemical (qp) and non-photochemical (qN) quenching, as well as the ratio of variable fluorescence to maximum fluorescence during steady-state illumination (F'v/F'm), were determined. In accordance with the Weis and Berry model, most plants studied exhibited an approximately linear relationship between ØO2/qp (i.e., the yield of O2 evolution by open Photosystem II reaction centres) and qN, except for wild-type barley that showed a non-linear relationship. In contrast to the linear relationship reported by Genty et al. for qp×F'v/F'm (i.e., the quantum yield of Photosystem II electron transport) and ØCO2, we found a non-linear relationship between qp×F'v/F'm and ØO2 for all plants, except for the chlorina mutant of barley, which showed a largely linear relationship. The curvilinearity of wild-type barley deviated somewhat from that of other species tested. The non-linear part of the relationship was confined to low, limiting photon flux densities, whereas at higher light levels the relationship was linear. Photoinhibition did not change the overall shape of the relationship between qp×F'v/F'm and ØO2 except that the maximum values of the quantum yields of Photosystem II electron transport and photosynthetic O2 evolution decreased in proportion to the degree of photoinhibition. This implies that the quantum yield of Photosystem II electron transport under high light conditions may be similar for photoinhibited and non-inhibited plants. Based on our experimental results and theoretical analyses of photochemical and non-photochemical fluoresce quenching processes, we conclude that both models, although not universal for all plants, provide useful means for the prediction of photosynthesis from fluorescence parameters. However, we also discuss that conditions which alter one or more of the rate constants that determine the various fluorescence parameters, as well as differential light penetration in assays for oxygen evolution and fluorescence emission, may have direct effect on the relationships of the two models.Abbreviations F0 and F'0
fluorescence when all Photosystem II reaction centres are open in dark- and light-acclimated leaves, respectively
- Fm and F'm
fluorescence when all Photosystem II reaction centres are closed in dark and light, respectively
- Fv
variable fluorescence equal to Fm-F0
- Fs
steady state level of fluorescence in light
- F'v and F'm
variable (F'm-F'0) and maximum fluorescence under steady state light conditions
- HEPES
N-2-hydroxyethylpiperazine-N-2-ethane-sulphonic acid
- QA
the primary, stabile quinone acceptor of Photosystem II
- qN
non-photochemical quenching of fluorescence
- qp
photochemical quenching of fluorescence
- ØO2
quantum yield of CO2-saturated O2 evolution based on absorbed photons 相似文献