共查询到20条相似文献,搜索用时 0 毫秒
1.
Field populations of Drosophila melanogaster are often infected with Wolbachia, a vertically transmitted microorganism. Under laboratory conditions the infection causes partial incompatibility in crosses between infected males and uninfected females. Here we examine factors influencing the distribution of the infection in natural populations. We show that the level of incompatibility under field conditions was much weaker than in the laboratory. The infection was not transmitted with complete fidelity under field conditions, while field males did not transmit the infection to uninfected females and Wolbachia did not influence sperm competition. There was no association between field fitness as measured by fluctuating asymmetry and the infection status of adults. Infected field females were smaller than uninfecteds in some collections from a subtropical location, but not in other collections from the same location. Laboratory cage studies showed that the infection did not change in frequency when populations were maintained at a low larval density, but it decreased in frequency at a high larval density. Monitoring of infection frequencies in natural populations indicated stable frequencies in some populations but marked fluctuations in others. Simple models suggest that the infection probably provides a fitness benefit for the host in order to persist in populations. The exact nature of this benefit remains elusive. 相似文献
2.
Z Veneti S Zabalou G Papafotiou C Paraskevopoulos S Pattas I Livadaras G Markakis J K Herren J Jaenike K Bourtzis 《Heredity》2012,109(5):306-312
Wolbachia manipulate insect host biology through a variety of means that result in increased production of infected females, enhancing its own transmission. A Wolbachia strain (wInn) naturally infecting Drosophila innubila induces male killing, while native strains of D. melanogaster and D. simulans usually induce cytoplasmic incompatibility (CI). In this study, we transferred wInn to D. melanogaster and D. simulans by embryonic microinjection, expecting conservation of the male-killing phenotype to the novel hosts, which are more suitable for genetic analysis. In contrast to our expectations, there was no effect on offspring sex ratio. Furthermore, no CI was observed in the transinfected flies. Overall, transinfected D. melanogaster lines displayed lower transmission rate and lower densities of Wolbachia than transinfected D. simulans lines, in which established infections were transmitted with near-perfect fidelity. In D. simulans, strain wInn had no effect on fecundity and egg-to-adult development. Surprisingly, one of the two transinfected lines tested showed increased longevity. We discuss our results in the context of host-symbiont co-evolution and the potential of symbionts to invade novel host species. 相似文献
3.
The aim of this study is to examine the expression of cytoplasmic incompatibility and investigate the distribution and population frequencies of Wolbachia pipientis strains in Drosophila simulans. Nucleotide sequence data from 16S rDNA and a Wolbachia surface protein coding sequence and cytoplasmic incompatibility assays identify four distinct Wolbachia strains: wHa, wRi, wMa, and wAu. The levels of cytoplasmic incompatibility between six lines carrying these strains of bacteria and three control lines without bacteria are characterized. Flies infected with wHa and wRi are bidirectionally incompatible, and males that carry either strain can only successfully produce normal numbers of offspring with females carrying the same bacterial strain. Males infected with wAu do not express incompatibility. Males infected with the wMa strain express intermediate incompatibility when mated to females with no bacteria and no incompatibility with females with any other Wolbachia strain. We conduct polymerase chain reaction/restriction fragment length polymorphism assays to distinguish the strain of Wolbachia and the mitochondrial haplotype to survey populations for each type and associations between them. Drosophila simulans is known to have three major mitochondrial haplotypes (siI, sill, and siIII) and two subtypes (siIIA and siIIB). All infected lines of the sil haplotype carry wHa, wNo, or both; wMa and wNo are closely related and it is not clear whether they are distinct strains or variants of the same strain. Infected lines with the silIA haplotype harbor wRi and the siIIB haplotype carries wAu. The wMa infection is found in siIII haplotype lines. The phenotypic expression of cytoplasmic incompatibility and its relation to between-population differences in frequencies of Wolbachia infection are discussed. 相似文献
4.
Background
In California Drosophila simulans, the maternally inherited Riverside strain Wolbachia infection (wRi) provides a paradigm for rapid spread of Wolbachia in nature and rapid evolutionary change. wRi induces cytoplasmic incompatibility (CI), where crosses between infected males and uninfected females produce reduced egg-hatch. The three parameters governing wRi infection-frequency dynamics quantify: the fidelity of maternal transmission, the level of cytoplasmic incompatibility, and the relative fecundity of infected females. We last estimated these parameters in nature in 1993. Here we provide new estimates, under both field and laboratory conditions. Five years ago, we found that wRi had apparently evolved over 15 years to enhance the fecundity of infected females; here we examine whether CI intensity has also evolved.Methodology/Principal Findings
New estimates using wild-caught flies indicate that the three key parameters have remained relatively stable since the early 1990s. As predicted by our three-parameter model using field-estimated parameter values, population infection frequencies remain about 93%. Despite this relative stability, laboratory data based on reciprocal crosses and introgression suggest that wRi may have evolved to produce less intense CI (i.e., higher egg hatch from incompatible crosses). In contrast, we find no evidence that D. simulans has evolved to lower the susceptibility of uninfected females to CI.Conclusions/Significance
Evolution of wRi that reduces CI is consistent with counterintuitive theoretical predictions that within-population selection on CI-causing Wolbachia does not act to increase CI. Within taxa, CI is likely to evolve mainly via pleiotropic effects associated with the primary targets of selection on Wolbachia, i.e., host fecundity and transmission fidelity. Despite continuous, strong selection, D. simulans has not evolved appreciably to suppress CI. Our data demonstrate a lack of standing genetic variation for CI resistance in the host. 相似文献5.
In Drosophila sechellia, the endocellular bacterium Wolbachia induces cytoplasmic incompatibility (CI): in crosses involving infected males, a partial or complete embryonic mortality occurs unless the female bears the same Wolbachia. D. sechellia is known to harbour two Wolbachia variants, namely wSh and wSn, closely related to wHa and wNo, respectively, two strains infecting the populations of D. simulans from the Seychelles archipelago and New Caledonia. Strikingly, the two species show similar infection patterns: in D. sechellia, wSh can be present on its own or in double infection with wSn, but individuals carrying wSn only do not occur; in D. simulans, wHa can be present on its own or in double infection with wNo, but individuals carrying wNo only do not occur, or occur at very low frequency. Previous experiments on D. simulans showed that lines singly infected by wNo can be obtained by segregation, and stably maintained. Here we investigate this issue in D. sechellia through an 18 generation experiment, and show that wSn and wSh singly infected lines can arise by segregation. Using singly infected lines obtained in this experiment, we estimate the CI intensities of wSh and wSn in D. sechellia, and compare these to the CI intensities of the same Wolbachia injected into D. simulans. Our results do not suggest any consistent effect of the host species on the CI induced by wSh. On the contrary, it seems that wSn expression is repressed by host factors in D. sechellia. 相似文献
6.
Genomic patterns of occurrence of the transposable element hobo are polymorphic in the sibling species Drosophila melanogaster and D. simulans. Most tested strains of both species have apparently complete (3.0 kb) and smaller hobo elements (H lines), but in both species some strains completely lack such canonical hobo elements (E lines). The occurrence of H and E lines in D. simulans as well as in D. melanogaster implies that an hypothesis of recent introduction in the latter species is inadequate to explain the phylogenetic occurrence of hobo. Particular internally deleted elements, the approximately 1.5 kb Th1 and Th2 elements, are abundant in many lines of D. melanogaster, and an analogous 1.1 kb internally deleted element, h del sim, is abundant in most lines of D. simulans. Besides the canonical hobo sequences, both species (and their sibling species D. sechellia and D. mauritiana) have many hobo-hybridizing sequences per genome that do not appear to be closely related to the canonical hobo sequence. 相似文献
7.
Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans 总被引:2,自引:0,他引:2
The effects of high temperatures, antibiotics, nutrition and larval density on cytoplasmic incompatibility caused by a Wolbachia infection were investigated in Drosophila simulans. Exposure of larvae from an infected stock to moderate doses of tetracycline led to complete incompatibility when treated females were crossed to infected males; the same doses only caused a partial restoration of compatibility when treated males were crossed to uninfected females. In crosses with treated females, there was a strong correlation between dose effects on hatch rates and infection levels in embryos produced by these females. Ageing and rearing males at a high temperature led to increased compatibility. However, exposing infected females to a high temperature did not influence their compatibility with infected males. Male temperature effects depended on conditions experienced at the larval stage but not the pupal stage. Exposure to 25 °C reduced the density of Wolbachia in embryos compared with a 19 °C treatment. Low levels of nutrition led to increased compatibility, but no effect of larval crowding was detected. These findings show the ways environmental factors can influence the expression of cytoplasmic incompatibility and suggest that environmental effects may be mediated by bacterial density. 相似文献
8.
Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. 总被引:10,自引:0,他引:10
F Rousset D Vautrin M Solignac 《Proceedings. Biological sciences / The Royal Society》1992,247(1320):163-168
Sequences of a segment of the 16S ribosomal DNA of Wolbachia, a rickettsia-like microorganism responsible for cytoplasmic incompatibility in Drosophila simulans, have been obtained after polymerase chain reaction (PCR) amplification. Their comparison with other eubacterial sequences allows us to assign these endosymbionts to the alpha subdivision of purple bacteria. Four related sequences have been obtained for microorganisms carried by eight isofemale lines representative of the three mitochondrial types of D. simulans. Their phylogeny and level of divergence do not parallel that of the mitochondrial DNA, suggesting that several independent infections occurred. There is no direct relation between bacterial phylogeny and formerly identified incompatibility types. 相似文献
9.
Sinkins SP 《Insect biochemistry and molecular biology》2004,34(7):723-729
Wolbachia are maternally inherited bacteria that induce cytoplasmic incompatibility in mosquitoes, and are able to use these patterns of sterility to spread themselves through populations. For this reason they have been proposed as a gene drive system for mosquito genetic replacement, as well as for the reduction of population size or for modulating population age structure in order to reduce disease transmission. Here, recent progress in the study of mosquito Wolbachia is reviewed. We now have much more comprehensive estimates of the parameters that can affect the spread of Wolbachia through natural populations from low starting frequencies, and for waves of spread to be maintained in the face of partial barriers to gene flow. In Aedes albopictus these dynamics are extremely favourable, with very high maternal transmission fidelity and levels of incompatibility recorded. Correspondence between measurements taken in the lab and field is much better than in the Drosophila simulans model system. Important research goals are also discussed, including Wolbachia transformation, interspecific transfer and the elucidation of the mechanisms of incompatibility and rescue; all will be aided by a wealth of new Wolbachia genome information. 相似文献
10.
Electron microscopic and morphometric analyses of Wolbachia distribution in early embryos of Drosophila flies have demonstrated that the number of bacteria in the embryo remains constant from fertilization to blastoderm, and that afterwards the symbionts could be observed only in the polar cells. Each bacterium has a three-layer envelope, makes contacts with microtubules and moves through the cytoplasm following the actively dividing nuclei. It has been found for the first time that Wolbachia could produce secretory vacuoles in the cytoplasm of early embryos. The relative volume of Wolbachia was five times as much in the embryos of Drosophila simulans as in those of D. melanogaster (Canton S), while the survival rate of D. simulans was half as much as that of D. melanogaster. It was shown that Wolbachia could form spore-like structures in D. simulans embryos. Ultrastructural investigations of Drosophila ovaries suggest that the bacteria may be present in all ovariol cells, including the oocyte, within whose cytoplasm they are delivered to the host. The highest number of symbionts was observed in germarium cells. In ovariol cells, the bacteria gradually decrease in number as oogenesis progresses. It has been determined for the first time that the symbionts are located closely to membranes of rough endoplasmatic reticulum in follicular and nurse cells of D. melanogaster. The data obtained suggest that Wolbachia may be involved in the regulation of oocyte maturation. 相似文献
11.
Wolbachia is an endosymbiont of diverse arthropod lineages that can induce various alterations of host reproduction for its own benefice. Cytoplasmic incompatibility (CI) is the most common phenomenon, which results in embryonic lethality when males that bear Wolbachia are mated with females that do not. In the cherry fruit fly, Rhagoletis cerasi, Wolbachia seems to be responsible for previously reported patterns of incompatibility between populations. Here we report on the artificial transfer of two Wolbachia variants (wCer1 and wCer2) from R. cerasi into Drosophila simulans, which was performed with two major goals in mind: first, to isolate wCer1 from wCer2 in order to individually test their respective abilities to induce CI in the new host; and, second, to test the theoretical prediction that recent Wolbachia-host associations should be characterized by high levels of CI, fitness costs to the new host, and inefficient transmission from mothers to offspring. wCer1 was unable to develop in the new host, resulting in its rapid loss after successful injection, while wCer2 was established in the new host. Transmission rates of wCer2 were low, and the infection showed negative fitness effects, consistent with our prediction, but CI levels were unexpectedly lower in the new host. Based on these parameter estimates, neither wCer1 nor wCer2 could be naturally maintained in D. simulans. The experiment thus suggests that natural Wolbachia transfer between species might be restricted by many factors, should the ecological barriers be bypassed. 相似文献
12.
Wolbachia is an endocellular bacterium infecting arthropods and nematodes. In arthropods, it invades host populations through various mechanisms, affecting host reproduction, the most common of which being cytoplasmic incompatibility (CI). CI is an embryonic mortality occurring when infected males mate with uninfected females or females infected by a different Wolbachia strain. This phenomenon is observed in Drosophila simulans, an intensively studied Wolbachia host, harbouring at least five distinct bacterial strains. In this study, we investigate various aspects of the Wolbachia infections occurring in two continental African populations of D. simulans: CI phenotype, phylogenetic position based on the wsp gene and associated mitochondrial haplotype. From the East African population (Tanzania), we show that (i) the siIII mitochondrial haplotype occurs in continental populations, which was unexpected based on the current views of D. simulans biogeography, (ii) the wKi strain (that rescues from CI while being unable to induce it) is very closely related to the CI-inducing strain wNo, (iii) wKi and wNo might not derive from a unique infection event, and (iv) wKi is likely to represent the same entity as the previously described wMa variant. In the West African population (Cameroon), the Wolbachia infection was found identical to the previously described wAu, which does not induce CI. This finding supports the view that wAu might be an ancient infection in D. simulans. 相似文献
13.
Wolbachia are maternally inherited, intracellular alpha-proteobacteria that infect a wide range of arthropods. They manipulate the reproduction of hosts to facilitate their spread into host populations, through ways such as cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. The influence of Wolbachia infection on host populations has attracted considerable interest in their possible role in speciation and as a potential agent of biological control. In this study, we used both microinjection and nested PCR to show that the Wolbachia naturally infecting Drosophila simulans can be transferred into a naturally Wolbachia-infected strain of the small brown planthopper Laodelphax striatellus, with up to 30% superinfection frequency in the F(12) generation. The superinfected males of L. striatellus showed unidirectional CI when mated with the original single-infected females, while superinfected females of L. striatellus were compatible with superinfected or single-infected males. These results are, to our knowledge, the first to establish a superinfected horizontal transfer route for Wolbachia between phylogenetically distant insects. The segregation of Wolbachia from superinfected L. striatellus was observed during the spreading process, which suggests that Wolbachia could adapt to a phylogenetically distant host with increased infection frequency in the new host population; however, it would take a long time to establish a high-frequency superinfection line. This study implies a novel way to generate insect lines capable of driving desired genes into Wolbachia-infected populations to start population replacement. 相似文献
14.
Numerous laboratory investigations have compared Drosophila melanogaster and D. simulans for various life history traits and fitness related ecophysiological parameters. From presently available information, it is however difficult to get a general comparative pattern describing the divergence of their ecological niches and understanding their demographic success. Two environmental factors seem however to have played a major role: temperature and alcoholic resources. From an ecophysiological approach, D. simulans may be described as generally more sensitive to stresses; other results point to this species as more cold adapted than its sibling; in some cases, however, D. simulans may appear as better adapted to a warm environment. When investigated, ecophysiological traits show a lesser geographic variability in D. simulans than in D. melanogaster. Presently available information does not explain the ecological prevalence of D. simulans in many places with a mild temperate or subtropical climate. This is presumably due to the fact that most comparisons have been done at a single, standard temperature of 25 degrees C. Comparative studies should be undertaken, spanning the thermal ranges of the two species, and the phenotypic plasticity of ecophysiological traits should now be considered. 相似文献
15.
Drosophila melanogaster and its close relatives have been extremely important model species in the development of population genetic models that serve to explain patterns of diversity in natural populations, a major goal of evolutionary biology. A detailed picture of the evolutionary history of these species is beginning to emerge, as the relative importance of forces including demographic changes and natural selection is established. A continuing aim is to characterise levels of genetic diversity in a large number of populations of these species, covering a wide geographic area. We have used collections from five previously un-sampled wild populations of D. melanogaster and two of D. simulans, across three continents. We estimated levels of genetic diversity within, and divergence between, these populations, and looked for evidence of genetic structure both between ancestral and derived populations, and amongst derived populations. We also investigated the prevalence of infection with the bacterial endosymbiont Wolbachia. We found that D. melanogaster populations from Sub-Saharan Africa are the most diverse, and that divergence is highest between these and non-Sub-Saharan populations. There is strong evidence for structuring of populations between Sub-Saharan Africa and the rest of the world, and some evidence for weak structure amongst derived populations. Populations from Sub-Saharan Africa also differ in the prevalence of Wolbachia infection, with very low levels of infection compared to populations from the rest of the world. 相似文献
16.
Ary A. Hoffmann 《Entomologia Experimentalis et Applicata》1988,48(1):61-67
Drosophila melanogaster (Meigen) females from stocks collected at Melbourne (latitude 37°S) show partial incompatibility when mated with males from stocks collected at Townsville (latitude 19°S) on the east coast of Australia. The reciprocal cross is compatible. Eggs have reduced hatchability in the incompatible cross. The incompatibility is maternally inherited over three generations. Compatibility can be restored by culturing Townsville flies on medium with tetracycline for one generation and by using 2-week-old Townsville males.
Incompatibilité cytoplasmique partielle entre deux populations australiennes de Drosophila melanogaster
Résumé Les souches de D. melanogaster récoltées à Melbourne (37°S) et Townsville (19°S) sur la côte Est de l'Australie montrent une incompatibilité partielle lorsque les femelles Melbourne sont accouplées aux mâles Townsville. Une telle incompatibilité n'est décelée, ni dans les croisements intrapopulations, ni dans le croisement réciproque. Le taux d'éclosion des oeufs est réduit d'environ 30% dans le croisement incompatible, mais la viabilité des larves n'est pas modifiée. Les éléments, mâle et femelle, de ce système d'incompatibilité sont hérités maternellement pendant 3 générations de croisements en retour. La compatibilité peut être intégralement rétablie en cultivant pendant une génération la souche Townsville avec un régime contenant de la tétracycline, et partiellement rétablie en utilisant des mâles âgés de 2 semaines.相似文献
17.
18.
19.
20.
Low genic variation in male-reproductive-tract proteins of Drosophila melanogaster and D. simulans 总被引:3,自引:0,他引:3
We report results, using two-dimensional gel electrophoresis (2DE), of natural population surveys of allelic variation in approximately 300 male-reproductive-tract polypeptides in both Drosophila melanogaster and its sibling species, D. simulans. Despite our efforts to maximize operational sensitivity of our 2DE gels to polymorphism, variation estimates in both species were low (proportion of polymorphic loci [P] = 9%, and average heterozygosity [H] = 1%-3%), compared with those by one-dimensional gel electrophoresis (1DE) (P = 29%-55%; H = 8%-19%) in the same populations. However, H of polymorphic loci was very similar for 2DE and 1DE proteins; and for 17 of a total of 54 polymorphic proteins, 2DE detected three or four distinct alleles. The results suggest that the differing levels of variability widely seen with 1DE and 2DE are real and reflect differing intensities of functional constraint between different classes of structural loci. However, the alternative possibility remains that 2DE has a greater between-locus unevenness of variant detection sensitivity than does 1DE. 相似文献