首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mapping loci controlling vernalization requirement in Brassica rapa   总被引:1,自引:0,他引:1  
Brassica cultivars are classified as biennial or annual based on their requirement for a period of cold treatment (vernalization) to induce flowering. Genes controlling the vernalization requirement were identified in a Brassica rapa F2 population derived from a cross between an annual and a biennial oilseed cultivar by using an RFLP linkage map and quantitative trait locus (QTL) analysis of flowering time in F3 lines. Two genomic regions were strongly associated with variation for flowering time of unvernalized plants and alleles from the biennial parent in these regions delayed flowering. These QTLs had no significant effect on flowering time after plants were vernalized for 6 weeks, suggesting that they control flowering time through the requirement for vernalization. The two B. rapa linkage groups containing these QTLs had RFLP loci in common with two B. napus linkage groups that were shown previously to contain QTLs for flowering time. An RFLP locus detected by the cold-induced gene COR6.6 cloned from Arabidopsis thaliana mapped very near to one of the B. rapa QTLs for flowering time.  相似文献   

2.
A segregating population of F1-derived doubled haploid (DH) lines of Brassica oleracea was used to detect and locate QTLs controlling 27 morphological and developmental traits, including leaf, flowering, axillary bud and stem characters. The population resulted from a cross between two very different B. oleracea crop types, an annual cauliflower and a biennial Brussels sprout. A principal component analysis (PCA), based on line means, allowed all the traits to be grouped into distinct categories according to the first five Principal Components. These were: leaf traits (PC1), flowering traits (PC2), axillary bud traits (PC3 and 5) and stem traits (PC4). Between zero and four putative QTL were located per trait, which individually explained between 6% and 43% of the additive genetic variation, using the multiple-marker regression approach to QTL mapping. For lamina width, bare petiole length and stem length two QTL with opposite effects were detected on the same linkage groups. Intra- and inter-specific comparative mapping using RFLP markers identified a QTL on linkage group O8 accounting for variation in vernalisation, which is probably synonymous with a QTL detected on linkage group N19 of Brassica napus. In addition, a QTL for petiole length detected on O3 of this study appeared to be homologous to a QTL detected on another B. oleracea genetic map (Camargo et al. 1995). Received: 28 March 2001 / Accepted: 25 June 2001  相似文献   

3.
Mapping loci controlling flowering time in Brassica oleracea   总被引:6,自引:0,他引:6  
The timing of the transition from vegetative to reproductive phase is a major determinant of the morphology and value of Brassica oleracea crops. Quantitative trait loci (QTLs) controlling flowering time in B. oleracea were mapped using restriction fragment length polymorphism (RFLP) loci and flowering data of F3 families derived from a cabbage by broccoli cross. Plants were grown in the field, and a total of 15 surveys were made throughout the experiment at 5–15 day intervals, in which plants were inspected for the presence of flower buds or open flowers. The flowering traits used for data analysis were the proportion of annual plants (PF) within each F3 family at the end of the experiment, and a flowering-time index (FT) that combined both qualitative (annual/biennial) and quantitative (days to flowering) information. Two QTLs on different linkage groups were found associated with both PF and FT and one additional QTL was found associated only with FT. When combined in a multi-locus model, all three QTLs explained 54.1% of the phenotypic variation in FT. Epistasis was found between two genomic regions associated with FT. Comparisons of map positions of QTLs in B. oleracea with those in B. napus and B. rapa provided no evidence for conservation of genomic regions associated with flowering time between these species.  相似文献   

4.
Oilseed rape (Brassica napus) is an allotetraploid with two subgenomes descended from a common ancestor. Accordingly, its genome contains syntenic regions with many duplicate genes, some of which may have retained their original functions, whereas others may have diverged. Here, we mapped quantitative trait loci (QTL) for stem rot resistance (SRR), a disease caused by the fungus Sclerotinia sclerotiorum, and flowering time (FT) in a recombinant inbred line population. The population was genotyped using B. napus 60K single nucleotide polymorphism arrays and phenotyped in six (FT) and nine (SSR) experimental conditions or environments. In total, we detected 30 SRR QTL and 22 FT QTL and show that some of the major QTL associated with these two traits were co-localized, suggesting a genetic linkage between them. Two SRR QTL on chromosome A2 and two on chromosome C2 were shown to be syntenic, suggesting the functional conservation of these regions. We used the syntenic properties of the genomic regions to exclude genes for selection candidates responsible for QTL-associated traits. For example, 152 of the 185 genes could be excluded from a syntenic A2-C2 region. These findings will help to elucidate polyploid genomics in future studies, in addition to providing useful information for B. napus breeding programs.  相似文献   

5.
Earliness of flowering and maturity and high seed yield are important objectives of breeding spring Brassica napus canola. Previously, we have introgressed earliness of flowering from Brassica oleracea into spring B. napus canola through interspecific crossing between these two species. In this paper, we report quantitative trait locus (QTL) mapping of days to flower and seed yield by use of publicly available markers and markers designed based on flowering time genes and a doubled haploid population, derived from crossing of the spring canola parent and an early flowering line developed from a B. napus × B. oleracea cross, tested in nine field trials for over 5 years. Five genomic regions associated with days to flower were identified on C1, C2, C3, and C6 of which the single QTL of C1 was detected in all trials; in all cases, the allele introgressed from B. oleracea reduced the number of days to flower. BLASTn search in the Brassica genomes located the physical position of the QTL markers and identified putative flowering time genes in these regions. In the case of seed yield, ten QTL from eight linkage groups were detected; however, none could be consistently detected in all trials. The QTL region of C1 associated with days to flower did not show significant association with seed yield in more than 80% of the field trials; however, in a single trial, the allele introgressed from B. oleracea exerted a negative effect on seed yield. Thus, the genomic regions and molecular markers identified in this research could potentially be used in breeding for the development of early flowering B. napus canola cultivars without affecting seed yield in a majority of the environments.  相似文献   

6.
The Arabidopsis thaliana CONSTANS (CO) gene which promotes flowering in long days was recently isolated by chromosome walking. The mapping of QTLs controlling flowering time in Brassica species has identified genomic regions that contain homologues of the CO gene. Four genes homologous to the Arabidopsis CO gene were isolated from a pair of homoeologous loci in each of two doubled-haploid Brassica napus lines displaying different flowering times, N-o-1 and N-o-9. The four genes, BnCOa1, BnCOa9, BnCOb1 and BnCOb9, are located on linkage groups N10 and N19, and are highly similar to each other and to the Arabidopsis CO gene. Two regions of the proteins are particularly well conserved, a N-terminal region with two putative zinc fingers and a C-terminal region which may contain a nuclear localization signal. All four genes appear to be expressed in B. napus. The BnCOa1 allele was shown to complement the co-2 mutation in Arabidopsis in a dosage-dependent manner causing earlier flowering than in wild type under both long- and short-day conditions.  相似文献   

7.
We identified quantitative trait loci (QTL) underlying variation for flowering time in a doubled haploid (DH) population of vernalisation—responsive canola (Brassica napus L.) cultivars Skipton and Ag-Spectrum and aligned them with physical map positions of predicted flowering genes from the Brassica rapa genome. Significant genetic variation in flowering time and response to vernalisation were observed among the DH lines from Skipton/Ag-Spectrum. A molecular linkage map was generated comprising 674 simple sequence repeat, sequence-related amplified polymorphism, sequence characterised amplified region, Diversity Array Technology, and candidate gene based markers loci. QTL analysis indicated that flowering time is a complex trait and is controlled by at least 20 loci, localised on ten different chromosomes. These loci each accounted for between 2.4 and 28.6 % of the total genotypic variation for first flowering and response to vernalisation. However, identification of consistent QTL was found to be dependant upon growing environments. We compared the locations of QTL with the physical positions of predicted flowering time genes located on the sequenced genome of B. rapa. Some QTL associated with flowering time on A02, A03, A07, and C06 may represent homologues of known flowering time genes in Arabidopsis; VERNALISATION INSENSITIVE 3, APETALA1, CAULIFLOWER, FLOWERING LOCUS C, FLOWERING LOCUS T, CURLY LEAF, SHORT VEGETATIVE PHASE, GA3 OXIDASE, and LEAFY. Identification of the chromosomal location and effect of the genes influencing flowering time may hasten the development of canola varieties having an optimal time for flowering in target environments such as for low rainfall areas, via marker-assisted selection.  相似文献   

8.
ABSTRACT: BACKGROUND: Hybridization among Louisiana Irises has been well established and the genetic architecture of reproductive isolation is known to affect the potential for and the directionality of introgression between taxa. Here we use co-dominant markers to identify regions where QTL are located both within and between backcross maps to compare the genetic architecture of reproductive isolation and fitness traits across treatments and years. RESULTS: QTL mapping was used to elucidate the genetic architecture of reproductive isolation between Iris fulva and Iris brevicaulis. Homologous co-dominant EST-SSR markers scored in two backcross populations between I. fulva and I. brevicaulis were used to generate genetic linkage maps. These were used as the framework for mapping QTL associated with variation in 11 phenotypic traits likely responsible for reproductive isolation and fitness. QTL were dispersed throughout the genome, with the exception of one region of a single linkage group (LG) where QTL for flowering time, sterility, and fruit production clustered. In most cases, homologous QTL were not identified in both backcross populations, however, homologous QTL for flowering time, number of growth points per rhizome, number of nodes per inflorescence, and number of flowers per node were identified on several linkage groups. CONCLUSION: Two different traits affecting reproductive isolation, flowering time and sterility, exhibit different genetic architectures, with numerous QTL across the Iris genome controlling flowering time and fewer, less distributed QTL affecting sterility. QTL for traits affecting fitness are largely distributed across the genome with occasional overlap, especially on LG 4, where several QTL increasing fitness and decreasing sterility cluster. Given the distribution and effect direction of QTL affecting reproductive isolation and fitness, we have predicted genomic regions where introgression may be more likely to occur (those regions associated with an increase in fitness and unlinked to loci controlling reproductive isolation) and those that are less likely to exhibit introgression (those regions linked to traits decreasing fitness and reproductive isolation).  相似文献   

9.
Quantitative Trait Loci (QTL) for oil content has been previously analyzed in a SG-DH population from a cross between a Chinese cultivar and a European cultivar of Brassica napus. Eight QTL with additive and epistatic effects, and with environmental interactions were evaluated. Here we present an integrated linkage map of this population predominantly based on informative markers derived from Brassica sequences, including 249 orthologous A. thaliana genes, where nearly half (112) are acyl lipid metabolism related genes. Comparative genomic analysis between B. napus and A. thaliana revealed 33 colinearity regions. Each of the conserved A. thaliana segments is present two to six?times in the B. napus genome. Approximately half of the mapped lipid-related orthologous gene loci (76/137) were assigned in these conserved colinearity regions. QTL analysis for seed oil content was performed using the new map and phenotypic data from 11 different field trials. Nine significant QTL were identified on linkage groups A1, A5, A7, A9, C2, C3, C6 and C8, together explaining 57.79% of the total phenotypic variation. A total of 14 lipid related candidate gene loci were located in the confidence intervals of six of these QTL, of which ten were assigned in the conserved colinearity regions and felled in the most frequently overlapped QTL intervals. The information obtained from this study demonstrates the potential role of the suggested candidate genes in rapeseed kernel oil accumulation.  相似文献   

10.
Managed environments in the form of well watered and water stressed trials were performed to study the genetic basis of grain yield and stay green in sorghum with the objective of validating previously detected QTL. As variations in phenology and plant height may influence QTL detection for the target traits, QTL for flowering time and plant height were introduced as cofactors in QTL analyses for yield and stay green. All but one of the flowering time QTL were detected near yield and stay green QTL. Similar co-localization was observed for two plant height QTL. QTL analysis for yield, using flowering time/plant height cofactors, led to yield QTL on chromosomes 2, 3, 6, 8 and 10. For stay green, QTL on chromosomes 3, 4, 8 and 10 were not related to differences in flowering time/plant height. The physical positions for markers in QTL regions projected on the sorghum genome suggest that the previously detected plant height QTL, Sb-HT9-1, and Dw2, in addition to the maturity gene, Ma5, had a major confounding impact on the expression of yield and stay green QTL. Co-localization between an apparently novel stay green QTL and a yield QTL on chromosome 3 suggests there is potential for indirect selection based on stay green to improve drought tolerance in sorghum. Our QTL study was carried out with a moderately sized population and spanned a limited geographic range, but still the results strongly emphasize the necessity of corrections for phenology in QTL mapping for drought tolerance traits in sorghum.  相似文献   

11.
We have assigned all nine linkage groups of a Brassica oleracea genetic map to each of the nine chromosomes of the karyotype derived from mitotic metaphase spreads of the B. oleracea var. alboglabra line A12DHd using FISH. The majority of probes were BACs, with A12DHd DNA inserts, which give clear, reliable FISH signals. We have added nine markers to the existing integrated linkage map, distributed over six linkage groups. BACs were definitively assigned to linkage map positions through development of locus-specific PCR assays. Integration of the cytogenetic and genetic linkage maps was achieved with 22 probes representing 19 loci. Four chromosomes (2, 4, 7, and 9) are in the same orientation as their respective linkage groups (O4, O7, O8, and O6) whereas four chromosomes (1, 3, 5, and 8) and linkage groups (O3, O9, O2, and O1) are in the opposite orientation. The remaining chromosome (6) is probably in the opposite orientation. The cytogenetic map is an important resource for locating probes with unknown genetic map positions and is also being used to analyze the relationships between genetic and cytogenetic maps.  相似文献   

12.
Long Y  Shi J  Qiu D  Li R  Zhang C  Wang J  Hou J  Zhao J  Shi L  Park BS  Choi SR  Lim YP  Meng J 《Genetics》2007,177(4):2433-2444
Most agronomical traits exhibit quantitative variation, which is controlled by multiple genes and are environmentally dependent. To study the genetic variation of flowering time in Brassica napus, a DH population and its derived reconstructed F(2) population were planted in 11 field environments. The flowering time varied greatly with environments; 60% of the phenotypic variation was attributed to genetic effects. Five to 18 QTL at a statistically significant level (SL-QTL) were detected in each environment and, on average, two new SL-QTL were discovered with each added environment. Another type of QTL, micro-real QTL (MR-QTL), was detected repeatedly from at least 2 of the 11 environments; resulting in a total of 36 SL-QTL and 6 MR-QTL. Sixty-three interacting pairs of loci were found; 50% of them were involved in QTL. Hundreds of floral transition genes in Arabidopsis were aligned with the linkage map of B. napus by in silico mapping; 28% of them aligned with QTL regions and 9% were consistent with interacting loci. One locus, BnFLC10, in N10 and a QTL cluster in N16 were specific to spring- and winter-cropped environments respectively. The number of QTL, interacting loci, and aligned functional genes revealed a complex genetic network controlling flowering time in B. napus.  相似文献   

13.
Multiple environmental cues regulate the transition to flowering. In natural environments, plants perceive seasonal progression by changes in day length and growth temperature, and plant density is monitored by changes in the light quality reflected from neighbouring vegetation. To understand the seasonal and plant-density dependence associated with natural allelic variation in flowering time, we conducted a quantitative trait loci (QTL) mapping study in Ler x Cvi, Bay x Sha and Ler x No-0 recombinant inbred line (RIL) populations of Arabidopsis thaliana. Days and total leaf number to bolting were examined under low and high plant density (200 or 1600 plants m(-2)) in autumn-winter and spring seasons. We found between 4 and 10 QTLs associated with seasonal and density variations in each RIL population. For Ler x Cvi and Bay x Sha RIL populations, a major proportion of QTLs showed seasonal and density interaction (up to 63%) and four QTLs were common to all environments (21%). Only three QTLs showed seasonal or density dependency. By aligning the linkage maps onto a common physical map, we detected at least one QTL at chromosome 2 and two QTLs at chromosome 5 that overlap between the three RIL populations, suggesting that these QTLs play a crucial role in the adaptive control of flowering time.  相似文献   

14.
The currently available methods for locating quantitative trait loci (QTLs) and measuring their effects in segregating populations lack precision unless individual QTLs have very high heritabilities. The use of recombinant backcross lines containing short regions of donor chromosome introgressed into a constant recipient background permits QTLs to be located with greater precision. The present paper describes the use of molecular markers to introgress defined short regions of chromosome from a donor doubled haploid calabrese line of Brassica oleracea (var. italica) into a recipient short generation variety (Brassica oleracea var. alboglabra). We demonstrate that in just two or three generations of backcrossing, combined with selection for mapped molecular markers, the generation of a library of recombinant backcross lines is feasible. The possible use and refinement of these lines are discussed. Key words : backcrossing, Brassica oleracea, introgression, molecular markers, near-isogenic lines, QTL mapping, recombinant backcross lines, substitution lines.  相似文献   

15.
The major difference between annual and biennial cultivars of oilseed Brassica napus and B. rapa is conferred by genes controlling vernalization-responsive flowering time. These genes were compared between the species by aligning the map positions of flowering time quantitative trait loci (QTLs) detected in a segregating population of each species. The results suggest that two major QTLs identified in B. rapa correspond to two major QTLs identified in B. napus. Since B. rapa is one of the hypothesized diploid parents of the amphidiploid B. napus, the vernalization requirement of B. napus probably originated from B. rapa. Brassica genes also were compared to flowering time genes in Arabidopsis thaliana by mapping RFLP loci with the same probes in both B. napus and Arabidopsis. The region containing one pair of Brassica QTLs was collinear with the top of chromosome 5 in A. thaliana where flowering time genes FLC, FY and CO are located. The region containing the second pair of QTLs showed fractured collinearity with several regions of the Arabidopsis genome, including the top of chromosome 4 where FRI is located. Thus, these Brassica genes may correspond to two genes (FLC and FRI) that regulate flowering time in the latest flowering ecotypes of Arabidopsis.  相似文献   

16.
An elite, three-generation family from the USDA Meat Animal Research Center twinning population was examined for evidence of ovulation rate quantitative trait loci (QTL). This work was both a continuation of previously reported results suggesting evidence for ovulation rate QTL on bovine Chromosome (Chr) 7 and an extension of a genome-wide search for QTL. Additional markers were typed on Chr 7 to facilitate interval mapping and testing of the hypothesis of one versus two QTL on that chromosome. In addition, 14 other informative markers were added to a selective genotyping genome screening of this family, and markers exhibiting nominal significance were used to identify chromosomal regions that were then subjected to more exhaustive analysis. For Chr 7, a total of 12 markers were typed over a region spanning the proximal two-thirds of the chromosome. Results from interval mapping analyses indicated evidence suggestive of the presence of QTL (nominal P < 0.00077) within this region. Subsequent analysis with a model postulating two QTL provided evidence (P < 0.05) for two rather than one QTL on this chromosome. Preliminary analysis with additional markers indicated nominal significance (P < 0.05) for regions of Chrs 5, 10, and 19. Each of these regions was then typed with additional markers for the entire three-generation pedigree. Significant evidence (P < 0.000026) of ovulation rate QTL was found for Chrs 5 and 19, while support on Chr 10 failed to exceed a suggestive linkage threshold (P > 0.00077). Received: 14 May 1999 / Accepted: 14 October 1999  相似文献   

17.
Backcross breeding with marker-assisted selection was used to construct an intervarietal set of part chromosome substitution lines in Brassica napus, formed from a cross between two winter varieties of oilseed rape: Tapidor and Victor. A total of 22 lines from this substitution library were examined over a 3-year period, in a total of nine field trials, for seed oil fatty acid composition and seed oil content. Trialing of the substitution lines gave evidence for the existence of 13 quantitative trait loci (QTL). All 13 QTL affected fatty acid composition of the seed, and were distributed among linkage groups 1, 3, 6, 7, 8, 11, 13, 14, 18, and 19. Seven of these QTL, on linkage groups 3, 6, 8, 13, 14, 18, and 19, also affected total seed oil content. The positions of these QTL are compared to those in the published literature and with respect to erucic acid QTL previously identified in a backcross population of the same cross. The substitution line approach gives increased precision and sensitivity for QTL mapping compared to other methods.  相似文献   

18.
Wide variation for morphological traits exists in Brassica rapa and the genetic basis of this morphological variation is largely unknown. Here is a report on quantitative trait loci (QTL) analysis of flowering time, seed and pod traits, growth-related traits, leaf morphology, and turnip formation in B. rapa using multiple populations. The populations resulted from crosses between the following accessions: Rapid cycling, Chinese cabbage, Yellow sarson, Pak choi, and a Japanese vegetable turnip variety. A total of 27 QTL affecting 20 morphological traits were detected, including eight QTL for flowering time, six for seed traits, three for growth-related traits and 10 for leaf traits. One major QTL was found for turnip formation. Principal component analysis and co-localization of QTL indicated that some loci controlling leaf and seed-related traits and those for flowering time and turnip formation might be the same. The major flowering time QTL detected in all populations on linkage group R02 co-localized with BrFLC2. One major QTL, controlling turnip formation, was also mapped at this locus. The genes that may underly this QTL and comparative analyses between the four populations and with Arabidopsis thaliana are discussed.  相似文献   

19.
Flowering time is a decisive factor in the adaptation of oat. Some oat varieties require low temperatures for floral initiation, a process called vernalization. The objectives of this study were to clone, characterize, and map genes associated with vernalization in oat, and to identify markers linked to quantitative trait loci (QTL) that affect vernalization response. Genetic linkage maps were developed using Diversity Arrays Technology markers in recombinant inbred lines from the oat populations UFRGS 8?×?UFRGS 930605 and UFRGS 881971?×?Pc68/5*Starter. Flowering time and response to vernalization were characterized using field trials and controlled greenhouse experiments, and QTL were identified in two genetic regions on each of the two maps. PCR primer pairs anchored in the conserved coding regions of the Vrn1, Vrn2, and Vrn3 genes from wheat, barley, and Lolium were used to amplify and clone corresponding oat sequences. Cloned sequences corresponding to the targeted genes were recovered for both Vrn1 and Vrn3. A copy of the Vrn3 gene was mapped using a PCR amplicon, and an oat Vrn1 fragment was mapped by restriction fragment length polymorphism analysis. The location of the mapped Vrn1 locus was homologous to major QTL affecting flowering time in other work, and homoeologous to major QTL affecting response to vernalization in this study.  相似文献   

20.
Quantitative trait loci affecting fatness in the chicken   总被引:13,自引:0,他引:13  
An F2 chicken population of 442 individuals from 30 families, obtained by crossing a broiler line with a layer line, was used for detecting and mapping Quantitative Trait Loci (QTL) affecting abdominal fat weight, skin fat weight and fat distribution. Within-family regression analyses using 102 microsatellite markers in 27 linkage groups were carried out with genome-wide significance thresholds. The QTL for abdominal fat weight were found on chromosomes 3, 7, 15 and 28; abdominal fat weight adjusted for carcass weight on chromosomes 1, 5, 7 and 28; skin and subcutaneous fat on chromosomes 3, 7 and 13; skin fat weight adjusted for carcass weight on chromosomes 3 and 28; and skin fat weight adjusted for abdominal fat weight on chromosomes 5, 7 and 15. Interactions of the QTL with sex or family were unimportant and, for each trait, there was no evidence for imprinting or of multiple QTL on any chromosome. Significant dominance effects were obtained for all but one of the significant locations for QTL affecting the weight of abdominal fat, none for skin fat and one of the three QTL affecting fat distribution. The magnitude of each QTL ranged from 3.0 to 5.2% of the residual phenotypic variation or 0.2-0.8 phenotypic standard deviations. The largest additive QTL (on chromosome 7) accounted for more than 20% of the mean weight of abdominal fat. Significant positive and negative QTL were identified from both lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号