首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ma J  SanMiguel P  Lai J  Messing J  Bennetzen JL 《Genetics》2005,170(3):1209-1220
The homeologous Orp1 and Orp2 regions of maize and the orthologous regions in sorghum and rice were compared by generating sequence data for >486 kb of genomic DNA. At least three genic rearrangements differentiate the maize Orp1 and Orp2 segments, including an insertion of a single gene and two deletions that removed one gene each, while no genic rearrangements were detected in the maize Orp2 region relative to sorghum. Extended comparison of the orthologous Orp regions of sorghum and japonica rice uncovered numerous genic rearrangements and the presence of a transposon-rich region in rice. Only 11 of 27 genes (40%) are arranged in the same order and orientation between sorghum and rice. Of the 8 genes that are uniquely present in the sorghum region, 4 were found to have single-copy homologs in both rice and Arabidopsis, but none of these genes are located near each other, indicating frequent gene movement. Further comparison of the Orp segments from two rice subspecies, japonica and indica, revealed that the transposon-rich region is both an ancient and current hotspot for retrotransposon accumulation and genic rearrangement. We also identify unequal gene conversion as a mechanism for maize retrotransposon rearrangement.  相似文献   

2.
The r1 and b1 genes of maize, each derived from the chromosomes of two progenitors that hybridized >4.8 million years ago (MYA), have been a rich source for studying transposition, recombination, genomic imprinting, and paramutation. To provide a phylogenetic context to the genetic studies, we sequenced orthologous regions from maize and sorghum (>600 kb) surrounding these genes and compared them with the rice genome. This comparison showed that the homologous regions underwent complete or partial gene deletions, selective retention of orthologous genes, and insertion of nonorthologous genes. Phylogenetic analyses of the r/b genes revealed that the ancestral gene was amplified independently in different grass lineages, that rice experienced an intragenomic gene movement and parallel duplication, that the maize r1 and b1 genes are descendants of two divergent progenitors, and that the two paralogous r genes of sorghum are almost as old as the sorghum lineage. Such sequence mobility also extends to linked genes. The cisZOG genes are characterized by gene amplification in an ancestral grass, parallel duplications and deletions in different grass lineages, and movement to a nonorthologous position in maize. In addition to gene mobility, both maize and rice regions experienced recent transposition (<3 MYA).  相似文献   

3.
4.
As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class ( Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue ( Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.  相似文献   

5.
6.
A "gene-island" sequencing strategy has been developed that expedites the targeted acquisition of orthologous gene sequences from related species for comparative genome analysis. A 152-kb bacterial artificial chromosome (BAC) clone from sorghum (Sorghum bicolor) encoding phytochrome A (PHYA) was fully sequenced, revealing 16 open reading frames with a gene density similar to many regions of the rice (Oryza sativa) genome. The sequences of genes in the orthologous region of the maize (Zea mays) and rice genomes were obtained using the gene-island sequencing method. BAC clones containing the orthologous maize and rice PHYA genes were identified, sheared, subcloned, and probed with the sorghum PHYA-containing BAC DNA. Sequence analysis revealed that approximately 75% of the cross-hybridizing subclones contained sequences orthologous to those within the sorghum PHYA BAC and less than 25% contained repetitive and/or BAC vector DNA sequences. The complete sequence of four genes, including up to 1 kb of their promoter regions, was identified in the maize PHYA BAC. Nine orthologous gene sequences were identified in the rice PHYA BAC. Sequence comparison of the orthologous sorghum and maize genes aided in the identification of exons and conserved regulatory sequences flanking each open reading frame. Within genomic regions where micro-colinearity of genes is absolutely conserved, gene-island sequencing is a particularly useful tool for comparative analysis of genomes between related species.  相似文献   

7.
A 268-kb chromosomal segment containing sorghum (Sorghum bicolor) genes that are orthologous to the maize (Zea mays) Rp1 disease resistance (R) gene complex was sequenced. A region of approximately 27 kb in sorghum was found to contain five Rp1 homologs, but most have structures indicating that they are not functional. In contrast, maize inbred B73 has 15 Rp1 homologs in two nearby clusters of 250 and 300 kb. As at maize Rp1, the cluster of R gene homologs is interrupted by the presence of several genes that appear to have no resistance role, but these genes were different from the ones found within the maize Rp1 complex. More than 200 kb of DNA downstream from the sorghum Rp1-orthologous R gene cluster was sequenced and found to contain many duplicated and/or truncated genes. None of the duplications currently exist as simple tandem events, suggesting that numerous rearrangements were required to generate the current genomic structure. Four truncated genes were observed, including one gene that appears to have both 5' and 3' deletions. The maize Rp1 region is also unusually enriched in truncated genes. Hence, the orthologous maize and sorghum regions share numerous structural features, but all involve events that occurred independently in each species. The data suggest that complex R gene clusters are unusually prone to frequent internal and adjacent chromosomal rearrangements of several types.  相似文献   

8.
The structural organization of the two closely related vitellogenin genes A1 and A2 has been determined and compared by electron microscopy. In both genes the mRNA-coding sequence of 6 kb is interrupted 33 times, leading to a total gene length of 21 kb for gene A1 and 16 kb for gene A2. Thus both genes have a mean exon length of 0.175 kb, while the mean intron length is 0.45 kb in gene A1 and 0.31 kb in gene A2. Because the introns interrupt the structural sequence at homologous positions in genes A1 and A2, we suggest that these two genes are the products of a duplication of an ancestral gene which had an intron-exon arrangement similar to that of the extant genes. Since the duplication event, the sequence and length of the analogous introns have changed rapidly, whereas homologous exons have diverged to an extent of only 5% of their sequences. The results suggest different mechanisms of evolution for exons and introns. While the exons evolved primarily by point mutations, such mutations, as well as deletion, insertion and duplication events, were important in the evolution of the introns.  相似文献   

9.
10.
11.
Here we present the first complete genomic sequence of Marek's disease virus serotype 3 (MDV3), also known as turkey herpesvirus (HVT). The 159,160-bp genome encodes an estimated 99 putative proteins and resembles alphaherpesviruses in genomic organization and gene content. HVT is very similar to MDV1 and MDV2 within the unique long (UL) and unique short (US) genomic regions, where homologous genes share a high degree of colinearity and their proteins share a high level of amino acid identity. Within the UL region, HVT contains 57 genes with homologues found in herpes simplex virus type 1 (HSV-1), six genes with homologues found only in MDV, and two genes (HVT068 and HVT070 genes) which are unique to HVT. The HVT US region is 2.2 kb shorter than that of MDV1 (Md5 strain) due to the absence of an MDV093 (SORF4) homologue and to differences at the UL/short repeat (RS) boundary. HVT lacks a homologue of MDV087, a protein encoded at the UL/RS boundary of MDV1 (Md5), and it contains two homologues of MDV096 (glycoprotein E) in the RS. HVT RS are 1,039 bp longer than those in MDV1, and with the exception of an ICP4 gene homologue, the gene content is different from that of MDV1. Six unique genes, including a homologue of the antiapoptotic gene Bcl-2, are found in the RS. This is the first reported Bcl-2 homologue in an alphaherpesvirus. HVT long repeats (RL) are 7,407 bp shorter than those in MDV1 and do not contain homologues of MDV1 genes with functions involving virulence, oncogenicity, and immune evasion. HVT lacks homologues of MDV1 oncoprotein MEQ, CxC chemokine, oncogenicity-associated phosphoprotein pp24, and conserved domains of phosphoprotein pp38. These significant genomic differences in and adjacent to RS and RL regions likely account for the differences in host range, virulence, and oncogenicity between nonpathogenic HVT and highly pathogenic MDV1.  相似文献   

12.
13.
Rp1 is a complex disease resistance locus in maize that is exceptional in both allelic variability and meiotic instability. Genomic sequence analysis of three maize BACs from the Rp1 region of the B73 inbred line revealed 4 Rp1 homologs and 18 other gene-homologous sequences, of which at least 16 are truncated. Thirteen of the truncated genes are found in three clusters, suggesting that they arose from multiple illegitimate break repairs at the same sites or from complex repairs of each of these sites with multiple unlinked DNA templates. A 43-kb region that contains an Rp1 homolog, six truncated genes, and three Opie retrotransposons was found to be duplicated in this region. This duplication is relatively recent, occurring after the insertion of the three Opie elements. The breakpoints of the duplication are outside of any genes or identified repeat sequence, suggesting a duplication mechanism that did not involve unequal recombination. A physical map and partial sequencing of the Rp1 complex indicate the presence of 15 Rp1 homologs in regions of approximately 250 and 300 kb in the B73 inbred line. Comparison of fully sequenced Rp1-homologous sequences in the region demonstrates a history of unequal recombination and diversifying selection within the Leu-rich repeat 2 region, resulting in chimeric gene structures.  相似文献   

14.
Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on ∼1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses.  相似文献   

15.
FISH of a maize sh2-selected sorghum BAC to chromosomes of Sorghum bicolor.   总被引:4,自引:0,他引:4  
Fluorescence in situ hybridization (FISH) of a 205 kb Sorghum bicolor bacterial artificial chromosome (BAC) containing a sequence complementary to maize sh2 cDNA produced a large pair of FISH signals at one end of a midsize metacentric chromosome of S. bicolor. Three pairs of signals were observed in metaphase spreads of chromosomes of a sorghum plant containing an extra copy of one arm of the sorghum chromosome arbitrarily designated with the letter D. Therefore, the sequence cloned in this BAC must reside in the arm of chromosome D represented by this monotelosome. This demonstrates a novel procedure for physically mapping cloned genes or other single-copy sequences by FISH, sh2 in this case, by using BACs containing their complementary sequences. The results reported herein suggest homology, at least in part, between one arm of chromosome D in sorghum and the long arm of chromosome 3 in maize.  相似文献   

16.
A unigene set of 1411 contigs was constructed from 2629 redundant maize expressed sequence tags (ESTs) mapped on the maizeDB genetic map. Rice orthologous sequences were identified by blast alignment against the rice genomic sequence. A total of 1046 (74%) maize contigs were associated with their corresponding homologues in the rice genome and 656 (47%) defined as potential orthologous relationships. One hundred and seventeen (8%) maize EST contigs mapped to two distinct loci on the maize genetic map, reflecting the tetraploid nature of the maize genome. Among 492 mono-locus contigs, 344 (484 redundant ESTs) identify collinear blocks between maize chromosomes 2 and 4 and a single rice chromosome, defining six new collinear regions. Fine-scale analysis of collinearity between rice chromosomes 1 and 5 with maize chromosomes 3, 6 and 8 shows the presence of internal rearrangements within collinear regions. Mapping of maize contigs to two distinct loci on the rice sequence identifies five new duplication events in rice. Detailed analysis of a duplication between rice chromosomes 1 and 5 shows that 11% of the annotated genes from the chromosome 1 locus are found duplicated on the chromosome 5 paralogous counterpart, indicating a high degree of re-organisations. The implications of these findings for map-based cloning in collinear regions are discussed.  相似文献   

17.
Long terminal repeat (LTR) retrotransposons are the major class I mobile elements in plants. They play crucial roles in gene expansion, diversification and evolution. However, their captured genes are yet to be genome-widely identified and characterized in most of plants although many genomes have been completely sequenced. In this study, we have identified 7,043 and 23,915 full-length LTR retrotransposons in the rice and sorghum genomes, respectively. High percentages of rice full-length LTR retrotransposons were distributed near centromeric region in each of the chromosomes. In contrast, sorghum full-length LTR retrotransposons were not enriched in centromere regions. This dissimilarity could be due to the discrepant retrotransposition during and after divergence from their common ancestor thus might be contributing to species divergence. A total of 672 and 1,343 genes have been captured by these elements in rice and sorghum, respectively. Gene Ontology (GO) and gene set enrichment analysis (GSEA) showed that no over-represented GO term was identified in LTR captured rice genes. For LTR captured sorghum genes, GO terms with functions in DNA/RNA metabolism and chromatin organization were over-represented. Only 36% of LTR captured rice genes were expressed and expression divergence was estimated as 11.9%. Higher percentage of LTR captured rice genes have evolved into pseudogenes under neutral selection. On the contrary, higher percentage of LTR captured sorghum genes were under purifying selection and 72.4% of them were expressed. Thus, higher percentage of LTR captured sorghum genes was functional. Small RNA analysis suggested that some of LTR captured genes in rice and sorghum might have been involved in negative regulation. On the other hand, positive selection has been observed in both rice and sorghum LTR captured genes and some of them were still expressed and functional. The data suggest that some of these LTR captured genes might have evolved into new gene functions.  相似文献   

18.
On the tetraploid origin of the maize genome   总被引:2,自引:0,他引:2  
Data from cytological and genetic mapping studies suggest that maize arose as a tetraploid. Two previous studies investigating the most likely mode of maize origin arrived at different conclusions. Gaut and Doebley [7] proposed a segmental allotetraploid origin of the maize genome and estimated that the two maize progenitors diverged at 20.5 million years ago (mya). In a similar study, using larger data set, Brendel and colleagues (quoted in [8]) suggested a single genome duplication at 16 mya. One of the key components of such analyses is to examine sequence divergence among strictly orthologous genes. In order to identify such genes, Lai and colleagues [10] sequenced five duplicated chromosomal regions from the maize genome and the orthologous counterparts from the sorghum genome. They also identified the orthologous regions in rice. Using positional information of genetic components, they identified 11 orthologous genes across the two duplicated regions of maize, and the sorghum and rice regions. Swigonova et al. [12] analyzed the 11 orthologues, and showed that all five maize chromosomal regions duplicated at the same time, supporting a tetraploid origin of maize, and that the two maize progenitors diverged from each other at about the same time as each of them diverged from sorghum, about 11.9 mya.  相似文献   

19.
A complete sequence of the rice sucrose synthase-1 (RSs1) gene   总被引:5,自引:0,他引:5  
Using a fragment of the maize sucrose synthase gene Sh-1 as probe, the rice genome was shown to contain at least three genes encoding sucrose synthase. One of these genes was isolated from a genomic library, and its full sequence, including 1.7 kb of 5 flanking sequence and 0.9 kb of 3 flanking sequence, is reported. The new rice gene, designated RSs1, is highly homologous to maize Sh-1 (approx. 94% identity in derived amino acid sequence), and contains an identical intron-exon structure (16 exons and 15 introns). Both RSs1 and maize Sh-1 show similar sequence homologies to a second rice sucrose synthase gene described recently (designated RSs2, Yu et al. (1992) Plant Mol Biol 18: 139–142), although both the rice genes predict an extra 6 amino acids at the C-terminus of the protein when compared to the maize gene. The RSs1 5 flanking sequence contains a number of promoter-like sequences, including putative protein-binding regions similar to maize zein genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号