首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stationary frequency distribution and allelic dynamics in finite populations are analyzed through stochastic simulations in three models of single-locus, multi-allelic sporophytic self-incompatibility. The models differ in the dominance relationships among alleles. In one model, alleles act codominantly in both pollen and style (SSIcod), in the second, alleles form a dominance hierarchy in pollen and style (SSIdom). In the third model, alleles interact codominantly in the style and form a dominance hierarchy in the pollen (SSIdomcod). The SSIcod model behaves similarly to the model of gametophytic self-incompatibility, but the selection intensity is stronger. With dominance, dominant alleles invade the population more easily than recessive alleles and have a lower frequency at equilibrium. In the SSIdom model, recessive alleles have both a higher allele frequency and higher expected life span. In the SSIdomcod model, however, loss due to drift occurs more easily for pollen-recessive than for pollen-dominant alleles, and therefore, dominant alleles have a higher expected life span than the more recessive alleles. The process of allelic turnover in the SSIdomcod and SSIdom models is closely approximated by a random walk on a dominance ladder. Implications of the results for experimental studies of sporophytic self-incompatibility in natural populations are discussed.  相似文献   

2.
M. K. Uyenoyama 《Genetics》1997,147(3):1389-1400
A method is proposed for characterizing the structure of genealogies among alleles that regulate selfincompatibility in flowering plants. Expected distributions of ratios of divergence times among alleles, scaled by functions of allele number, were generated by numerical simulation. These distributions appeared relatively insensitive to the particular parameter values assigned in the simulations over a fourfold range in effective population size and a 100-fold range in mutation rate. Generalized leastsquares estimates of the scaled indices were obtained from genealogies reconstructed from nucleotide sequences of self-incompatibility alleles from natural populations of two solanaceous species. Comparison of the observed indices to the expected distributions generated by numerical simulation indicated that the allelic genealogy of one species appeared consistent with the symmetric balancing selection generated by self-incompatibility. However, the allelic genealogy of the second species showed unusually long terminal branches, suggesting the operation of additional evolutionary processes.  相似文献   

3.
Billiard S  Castric V  Vekemans X 《Genetics》2007,175(3):1351-1369
We developed a general model of sporophytic self-incompatibility under negative frequency-dependent selection allowing complex patterns of dominance among alleles. We used this model deterministically to investigate the effects on equilibrium allelic frequencies of the number of dominance classes, the number of alleles per dominance class, the asymmetry in dominance expression between pollen and pistil, and whether selection acts on male fitness only or both on male and on female fitnesses. We show that the so-called "recessive effect" occurs under a wide variety of situations. We found emerging properties of finite population models with several alleles per dominance class such as that higher numbers of alleles are maintained in more dominant classes and that the number of dominance classes can evolve. We also investigated the occurrence of homozygous genotypes and found that substantial proportions of those can occur for the most recessive alleles. We used the model for two species with complex dominance patterns to test whether allelic frequencies in natural populations are in agreement with the distribution predicted by our model. We suggest that the model can be used to test explicitly for additional, allele-specific, selective forces.  相似文献   

4.
Negative frequency dependent selection (NFDS) is supposed to be the main force controlling allele evolution at the gametophytic self-incompatibility locus (S-locus) in strictly outcrossing species. Genetic drift also influences S-allele evolution. In perennial sessile organisms, evolution of allelic frequencies over two generations is mainly shaped by individual fecundities and spatial processes. Using wild cherry populations between two successive generations, we tested whether S-alleles evolved following NFDS qualitative and quantitative predictions. We showed that allelic variation was negatively correlated with parental allelic frequency as expected under NFDS. However, NFDS predictions in finite population failed to predict more than half S-allele quantitative evolution. We developed a spatially explicit mating model that included the S-locus. We studied the effects of self-incompatibility and local drift within populations due to pollen dispersal in spatially distributed individuals, and variation in male fecundity on male mating success and allelic frequency evolution. Male mating success was negatively related to male allelic frequency as expected under NFDS. Spatial genetic structure combined with self-incompatibility resulted in higher effective pollen dispersal. Limited pollen dispersal in structured distributions of individuals and genotypes and unequal pollen production significantly contributed to S-allele frequency evolution by creating local drift effects strong enough to counteract the NFDS effect on some alleles.  相似文献   

5.
RNase-based self-incompatibility: puzzled by pollen S   总被引:1,自引:0,他引:1  
Newbigin E  Paape T  Kohn JR 《The Plant cell》2008,20(9):2286-2292
Many plants have a genetically determined self-incompatibility system in which the rejection of self pollen grains is controlled by alleles of an S locus. A common feature of these S loci is that separate pollen- and style-expressed genes (pollen S and style S, respectively) determine S allele identity. The long-held view has been that pollen S and style S must be a coevolving gene pair in order for allelic recognition to be maintained as new S alleles arise. In at least three plant families, the Solanaceae, Rosaceae, and Plantaginaceae, the style S gene has long been known to encode an extracellular ribonuclease called the S-RNase. Pollen S in these families has more recently been identified and encodes an F-box protein known as either SLF or SFB. In this perspective, we describe the puzzling evolutionary relationship that exists between the SLF/SFB and S-RNase genes and show that in most cases cognate pairs of genes are not coevolving in the expected manner. Because some pollen S genes appear to have arisen much more recently than their style S cognates, we conclude that either some pollen S genes have been falsely identified or that there is a major problem with our understanding of how the S locus evolves.  相似文献   

6.
Recent studies of mating system evolution have attempted to include aspects of pollination biology in analysis of both theoretical models and experimental systems. In light of this growing trend, we propose a simple population genetic model for the evolution of gametophytic self-incompatibility, incorporating parameters for pollen discounting and pollen export/capture. In this model, we consider several cases that span the spectrum for dominance of the mutant self-incompatibility allele and for the degree of incompatibility conferred by the allele. We confirm earlier results that inbreeding depression is required for successful invasion of the self-incompatibility allele and we demonstrate that, unless pollen discounting is very low, the level of inbreeding depression must be very high for an allele conferring self-incompatibility to become established. Finally, we show that the dominance of the mutant allele has a greater impact on the fate of a newly arisen self-incompatibility allele than the strength of the incompatibility conferred by the allele. In particular, the more recessive the self-incompatibility expression in heterozygote stigmas and the weaker the response induced, the easier it is for a self-incompatibility allele to invade.  相似文献   

7.
We study the segregation of variants of a putative self-incompatibility gene in Arabidopsis lyrata. This gene encodes a sequence that is homologous to the protein encoded by the SRK gene involved in self-incompatibility in Brassica species. We show by diallel pollinations of plants in several full-sib families that seven different sequences of the gene in A. lyrata are linked to different S-alleles, and segregation analysis in further sibships shows that four other sequences behave as allelic to these. The family data on incompatibility provide evidence for dominance classes among the S-alleles, as expected for a sporophytic SI system. We observe no division into pollen-dominant and pollen-recessive classes of alleles as has been found in Brassica, but our alleles fall into at least three dominance classes in both pollen and stigma expression. The diversity among sequences of the A. lyrata putative S-alleles is greater than among the published Brassica SRK sequences, and, unlike Brassica, the alleles do not cluster into groups with similar dominance.  相似文献   

8.
Understanding genetic mechanisms of self-incompatibility (SI) and how they evolve is central to understanding the mating behaviour of most outbreeding angiosperms. Sporophytic SI (SSI) is controlled by a single multi-allelic locus, S, which is expressed in the diploid (sporophyte) plant to determine the SI phenotype of its haploid (gametophyte) pollen. This allows complex patterns of independent S allele dominance interactions in male (pollen) and female (pistil) reproductive tissues. Senecio squalidus is a useful model for studying the genetic regulation and evolution of SSI because of its population history as an alien invasive species in the UK. S. squalidus maintains a small number of S alleles (7–11) with a high frequency of dominance interactions. Some S. squalidus individuals also show partial selfing and/or greater levels of cross-compatibility than expected under SSI. We previously speculated that these might be adaptations to invasiveness. Here we describe a detailed characterization of the regulation of SSI in S. squalidus. Controlled crosses were used to determine the S allele dominance hierarchy of six S alleles and effects of modifiers on cross-compatibility and partial selfing. Complex dominance interactions among S alleles were found with at least three levels of dominance and tissue-specific codominance. Evidence for S gene modifiers that increase selfing and/or cross-compatibility was also found. These empirical findings are discussed in the context of theoretical predictions for maintenance of S allele dominance interactions, and the role of modifier loci in the evolution of SI.  相似文献   

9.
X. Vekemans  M. Slatkin 《Genetics》1994,137(4):1157-1165
The properties of gene and allelic genealogies at a gametophytic self-incompatibility locus in plants have been investigated analytically and checked against extensive numerical simulations. It is found that, as with overdominant loci, there are two genealogical processes with markedly different time scales. First, functionally distinct allelic lines diverge on an extremely long time scale which is inversely related to the mutation rate to new alleles. These alleles show a genealogical structure which is similar, after an appropriate rescaling of time, to that described by the coalescent process for genes at a neutral locus. Second, gene copies sampled within the same functional allelic line show genealogical relationships similar to neutral gene genealogies but on a much shorter time scale, which is on the same order of magnitude as the harmonic mean of the number of gene copies within an allelic line. These results are discussed in relation to data showing trans-specific polymorphisms for alleles at the gametophytic self-incompatibility locus in the Solanaceae. It is shown that population sizes on the order of 4 X 10(5) and a mutation rate per locus per generation as high as 10(-6) could account for estimated allelic divergence times in this family.  相似文献   

10.
11.
Recent theoretical advances have suggested that various forms of balancing selection may promote the evolution of dominance through an increase of the proportion of heterozygote genotypes. We test whether dominance can evolve in the sporophytic self-incompatibility (SSI) system in plants. SSI prevents mating between individuals expressing identical SI phenotypes by recognition of pollen by pistils, which avoids selfing and inbreeding depression. SI phenotypes depend on a complex network of dominance relationships between alleles at the self-incompatibility locus ( S -locus). Empirical studies suggest that these relationships are not random, but the exact evolutionary processes shaping these relationships remain unclear. We investigate the expected patterns of dominance under the hypothesis that dominance is a direct target of natural selection. We follow the fate of a mutant allele at the S -locus whose dominance relationships are changed but whose specificity remains unaltered. We show that strict codominance is not evolutionarily stable in SSI, and that inbreeding depression due to deleterious mutations linked or unlinked to the S -locus exerts strong constraints on changes in relative levels of dominance in pollen and pistil. Our results provide a general adaptive explanation for most patterns of dominance relationships empirically observed in natural plant populations.  相似文献   

12.
The ancestral selection graph, conditioned on the allelic types in the sample, is used to obtain a limiting gene genealogical process under strong selection. In an equilibrium, two-allele system with strong selection, neutral gene genealogies are predicted for random samples and for samples containing at most one unfavorable allele. Samples containing more than one unfavorable allele have gene genealogies that differ greatly from neutral predictions. However, they are related to neutral gene genealogies via the well-known Ewens sampling formula. Simulations show rapid convergence to limiting analytical predictions as the strength of selection increases. These results extend the idea of a soft selective sweep to deleterious alleles and have implications for the interpretation of polymorphism among disease-causing alleles in humans.  相似文献   

13.
In this paper, we investigated the genetic structure and distribution of allelic frequencies at the gametophytic self-incompatibility locus in three populations of Prunus avium L. In line with theoretical predictions under balancing selection, genetic structure at the self-incompatibility locus was almost three times lower than at seven unlinked microsatellites. Furthermore, we found that S-allele frequencies in wild cherry populations departed significantly from the expected isoplethic distribution towards which balancing selection is expected to drive allelic frequencies (i.e. identical frequency equal to the inverse of the number of alleles in the population). To assess whether this departure could be caused either by drift alone or by population structure, we used numerical simulations to compare our observations with allelic frequency distributions expected : (1) within a single deme from a subdivided population with various levels of differentiation; and (2) within a finite panmictic population with identical allelic diversity. We also investigated the effects of sample size and degree of population structure on tests of departure from isoplethic equilibrium. Overall, our results showed that the observed allele frequency distributions were consistent with a model of subdivided population with demes linked by moderate migration rate.  相似文献   

14.
nessi is a computer program generating predictions about allelic and genotypic frequencies at the S-locus in sporophytic self-incompatibility systems under finite and infinite populations. For any pattern of dominance relationships among self-incompatibility alleles, nessi computes deterministic equilibrium frequencies and estimates distributions in samples from finite populations of the number of alleles at equilibrium, allelic and genotypic frequencies at equilibrium and allelic and genotypic frequency changes in a single generation. These predictions can be used to rigorously test the impact of negative frequency-dependent selection on diversity patterns in natural populations.  相似文献   

15.
Gametophytic self-incompatibility in plants involves rejection of pollen when pistil and pollen share the same allele at the S locus. This locus is highly multiallelic, but the mechanism by which new functional S alleles are generated in nature has not been determined and remains one of the most intriguing conceptual barriers to a full understanding of self-incompatibility. The S(11) and S(13) RNases of Solanum chacoense differ by only 10 amino acids, but they are phenotypically distinct (i.e., they reject either S(11) or S(13) pollen, respectively). These RNases are thus ideally suited for a dissection of the elements involved in recognition specificity. We have previously found that the modification of four amino acid residues in the S(11) RNase to match those in the S(13) RNase was sufficient to completely replace the S(11) phenotype with the S(13) phenotype. We now show that an S(11) RNase in which only three amino acid residues were modified to match those in the S(13) RNase displays the unprecedented property of dual specificity (i.e., the simultaneous rejection of both S(11) and S(13) pollen). Thus, S(12)S(14) plants expressing this hybrid S RNase rejected S(11), S(12), S(13), and S(14) pollen yet allowed S(15) pollen to pass freely. Surprisingly, only a single base pair differs between the dual-specific S allele and a monospecific S(13) allele. Dual-specific S RNases represent a previously unsuspected category of S alleles. We propose that dual-specific alleles play a critical role in establishing novel S alleles, because the plants harboring them could maintain their old recognition phenotype while acquiring a new one.  相似文献   

16.
Sporophytic self-incompatibility (SSI) is a self-pollen recognition system that enforces outcrossing in plants. Recognition in SSI systems is typically controlled by a complex locus ( S -locus) with separate genes that determine pollen and stigma specificity. Experimental studies show that S -alleles can be dominant, recessive, or codominant, and that the dominance level of a given S -allele can depend upon whether pollen or stigma specificity is examined. Here and in the companion paper by Llaurens and colleagues, the evolution of dominance in single-locus SSI is explored using numerical models and simulation. Particular attention is directed at factors that can cause S -allele dominance to differ in pollen versus stigma. The effect of recombination between the S -locus and modifier locus is also examined. The models predict that limitation in the number of compatible mates is required for the evolution of S -allele dominance in the stigma but not in the pollen. Tight linkage between the S -locus and modifier promotes the evolution of S -allele dominance hierarchies. Model results are interpreted with respect to published information on the molecular basis of dominance in SSI systems, and reported S -allele dominance relationships in a variety of species. These studies show that dominant S -alleles are more common in the pollen than in the stigma, a pattern that when interpreted in light of model predictions, suggests that mate limitation may be relatively infrequent in natural populations with SSI.  相似文献   

17.
Stone JL  Pierce SE 《Heredity》2005,94(5):547-555
Strong frequency-dependent selection as found in the self-incompatibility loci of flowering plants maintains allelic lineages for extremely long time scales, such that allelic genealogies can shed insight into long-term demographic patterns of species. Effective mutation rate, as well as demographic change such as population bottlenecks, can influence genealogical structure. In addition, loss of functionality at the self-incompatibility locus is likely to affect radiation rates. Partial sequences for 21 S-RNase alleles of the mid-elevation tropical species Witheringia solanacea were obtained in order to compare their substitution rates and genealogy with those of Witheringia maculata and two species in the closely related genus Physalis. Sequences for W. solanacea fell into the three clades within the Solanaceae already identified for the genus. Terminal branch lengths for W. solanacea, scaled to the total depth of its phylogeny, were intermediate between the unusually short terminal branches of W. maculata and those of the two Physalis species. In contrast to the Physalis species, where interspecific dN/dS for closely related alleles exceeded 1.0 to the same degree as did intraspecific dN/dS, in Witheringia only intraspecific comparisons showed an excess of nonsynonymous substitutions, suggesting postspeciation radiation of alleles. Alleles associated with lowered S-RNase production and self-compatibility showed extremely short terminal branches. In summary, it appears that rapid recent diversification of alleles characterizes the Witheringia lineages. In some cases, this rapid diversification can be attributed to relaxed constraints due to breakdown of self-incompatibility.  相似文献   

18.
T. L. Kamps  D. R. McCarty    C. D. Chase 《Genetics》1996,142(3):1001-1007
In Zea mays L. plants carrying the S-type of sterility-inducing cytoplasm, male fertility is determined by a gametophytic, nuclear restoration-of-fertility gene. Haploid pollen carrying the fertility-restoring allele (historically designated Rf3) is starch-filled and functional, whereas pollen carrying the nonrestoring allele (historically designated rf3) is shrunken and nonfunctional. Because restoration of fertility occurs in haploid tissue, the dominance relationship of restoring and nonrestoring alleles is unknown. We have tested the dominance relationship of the restoring and nonrestoring alleles at the rf3 locus in diploid pollen. The meiotic mutant elongate was used to generate tetraploid plants carrying both Rf3 and rf3 alleles in the S cytoplasm. These plants shed predominantly starch-filled pollen, consistent with dominance of the restoring allele. Restriction fragment length polymorphisms linked to the rf3 locus demonstrated cotransmission of rf3 and Rf3 alleles through heterozygous diploid pollen, providing conclusive genetic evidence that the restoring allele is the dominant or functional form of this restoration-of-fertility gene. We suggest that other S-cytoplasm restorers result from loss-of-function mutations and propose analysis of unreduced gametes as a test of this model.  相似文献   

19.
A 2-locus model of the evolution of self-incompatibility in a population practicing partial selfing is presented. An allele is introduced at a modifier locus which influences the strength of the rejection reaction expressed by the style in response to antigens recognized in pollen. Two causes of inbreeding depression are investigated. First, offspring viability depends solely on the source (self or non-self) of the fertilizing pollen. Second, offspring viability declines with the expression of recessive deleterious alleles, segregating at a third (disease) locus, which exhibit an imperfect association with antigen alleles. Evolutionary changes occurring at the disease locus are not considered in this study. The condition under which a modifier allele that intensifies the incompatibility reaction increases when rare depends upon the number of antigens, the frequency of recessive deleterious alleles at the disease locus, and the level of association between the antigen locus and the disease locus. It is the improvement of viability among offspring derived by outcrossing, rather than the prevention of self-fertilization, that may represent the primary evolutionary function of genetic incompatibility systems.  相似文献   

20.
The breakdown of self-incompatibility has occurred repeatedly throughout the evolution of flowering plants and has profound impacts on the genetic structure of populations. Recent advances in understanding of the molecular basis of self-incompatibility have provided insights into the mechanisms of its loss in natural populations, especially in the tomato family, the Solanaceae. In the Solanaceae, the gene that controls self-incompatibility in the style codes for a ribonuclease that causes the degradation of RNA in pollen tubes bearing an allele at the S-locus that matches either of the two alleles held by the maternal plant. The pollen component of the S-locus has yet to be identified. Loss of self-incompatibility can be attributed to three types of causes: duplication of the S-locus, mutations that cause loss of S-RNase activity, and mutations that do not cause loss of S-RNase activity. Duplication of the S-locus has been well studied in radiation-induced mutants but may be a relatively rare cause of the breakdown of self-incompatibility in nature. Point mutations within the S-locus that disrupt the production of S-RNase have been documented in natural populations. There are also a number of mutants in which S-RNase production is unimpaired, yet self-incompatibility is disrupted. The identity and function of these mutations is not well understood. Careful work on a handful of model organisms will enable population biologists to better understand the breakdown of self-incompatibility in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号